Surface Energy Budget Process Relationships for Evaluating Model Performance in Central Greenland

Nathaniel Miller and Matthew Shupe CIRES, Univ. of Colorado/NOAA-ESRL-PSD

With important support from: Chris Cox, Jan Lenaerts, Jennifer Kay, Ola Persson, David Noone, Konrad Steffen, Ralf Bennartz, NOAA GMD

Importance of Greenland

- 1) Sea Level Rise: Losing 287 Gt/year = 0.8mm of sea level rise / year
- 2) Impacts on Thermohaline Circulation
- 3) Role in regional atmospheric circulation

Surface Energy Budget and Drivers at Summit Station

Surface Energy Budget

Impact of Liquid-bearing Clouds & Insolation

Response to Forcing terms

Annual Cycle of Responses

Models

- ERA-Interim (ERA-I)
 - Reanalysis product from the European Centre for Medium-Range Weather Forecasts
 - 3-hourly, 2010 2016
- Climate Forecast System version 2 (CFSv2)
 - Operational forecast model from the National Centers for Environmental Prediction
 - 6-hourly, 2011 2016
- Community Earth System Model (CESM)
 - Free running climate model maintained by the Climate and Global Dynamics Laboratory
 - 1-year data representative of current climate, 30-min
 - Beta version 7, candidate for CESM2, CAM6, CLM5

ERA-I Forcing

ERA-I Responses

CFSv2 Responses

Conclusions

- Multi-year SEB and cloud data set at Summit
- Achieved near closure in SEB calculations
- Model assessment of individual parameters AND process relationships
- Revealed important model deficiencies related to surface albedo, snow density, ABL processes

