

Sources of systematic differences in global CO₂ inverse model results

Benjamin Gaubert¹, B. B. Stephens¹,

Andrew R. Jacobson², Sourish Basu², Frederic Chevallier³, Christian Roedenbeck⁴, Prabir Patra⁵, Tazu Saeki⁵, Ingrid van der Laan-Luijkx⁶, Wouter Peters⁶, David Schimel⁷ and the HIPPO Measurements Team

¹National Center for Atmospheric Research, NCAR, Boulder, CO, USA

²University of Colorado Boulder and NOAA Earth System Research Laboratory Boulder, CO, USA. ³Laboratoire des Sciences du Climat et de l'Environnement, Institut Pierre-Simon Laplace, CEA-CNRS-UVSQ, Gif sur Yvette, France.

⁴Max Planck Institute for Biogeochemistry, Jena, Germany.

⁵Department of Environmental Geochemical Cycle Research, JAMSTEC, Yokohama, Japan.

⁶Meteorology and Air Quality, Wageningen University, Wageningen, Netherlands.

⁷Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.

Understanding the global CO₂ budget :

Global Carbon Project Le Quéré et al. [2016]

AGR = FF + OCEAN + LAND

- 1. The atmospheric growth rate is well known (derived from observations)
- 2. Fossil Fuel total emissions are well known
- 3. Global land = Residual

Perturbation of the global carbon cycle caused by anthropogenic activities, averaged globally for the decade 2006–2015 (GtCO₂/yr)

GLOBAL CARBON PROJECT

Derive CO₂ fluxes knowing priors and observations

Are inverse models still highly dependent on transport errors and a priori assumptions ?

1.Comparison of modelled a posteriori fluxes and Global Carbon Project **2.**CO₂ modelled after flux optimisation is compared to HIPPO observations

Modelling system	References	Grid	Transport	Meteorological
		Spacing	Model	fields
MACC-II	Chevallier et al.	3.75° x 1.875°	LMDZ	ECMWF wind
(v14r2)	(JGR 2010; GMD 2013)			
Jena	Pödenbeck (2005) 4° v		TM3	ERA interim
(S04_v3.8)	Rodenbeck (2005)	4 X 5		
CTE2016	van der Laan-Luijkx et al. (2017)	1° x 1°	TM5	ERA interim
СТ2016	Peters et al. (2007)	1° x 1°	TM5	ERA interim
	with updates documented at			
	<u>http://carbontracker.noaa.gov</u>			
ACTM IEA & CDIAC	Saeki and Patra (2017)	T106 (0.88 x0.84)	АСТМ	NCEP2
TM5-4DVar	Basu et al. (2013)	3° x 2°	TM5	ERA interim

Model results were systematically dependent on atmospheric transport

Northern Land

Tropical Land

Weak Northern and Strong Tropical Land Carbon Uptake from Vertical Profiles of Atmospheric CO₂

Britton B. Stephens,^{1*} Kevin R. Gurney,² Pieter P. Tans,³ Colm Sweeney,³ Wouter Peters,³ Lori Bruhwiler,³ Philippe Ciais,⁴ Michel Ramonet,⁴ Philippe Bousquet,⁴ Takakiyo Nakazawa,⁵ Shuji Aoki,⁵ Toshinobu Machida,⁶ Gen Inoue,⁷ Nikolay Vinnichenko,⁸† Jon Lloyd,⁹ Armin Jordan,¹⁰ Martin Heimann,¹⁰ Olga Shibistova,¹¹ Ray L. Langenfelds,¹² L. Paul Steele,¹² Roger J. Francey,¹² A. Scott Denning¹³

All units are PgC/yr	Northern extra-tropical flux	Trop + Southern Land flux
T3L2 (Gurney et al. 2004)	-2.42 +/- 1.09	0.95 +/- 1.22
T3L2 subset (Stephens et al. 2007)	-1.52 +/- 0.64	-0.49 +/- 0.3
DECCAD (Deulin et al. 2012)		

Is the remaining spread still due to transport error ?

Earth System Research Laboratory Global Monitoring Annual Conference

Evaluation of posterior CO₂ concentration vs. HIPPO data

Provide large scale CO₂ measurements with coverage in latitude, time, and vertical gradients

HIAPER Pole-to-Pole Observations

- Filter out continental BL, Airport, stratospheric air
- Detrended time series using Mauna-Loa trend component

May 23-24, 2017 Boulder, Colorado

Fit of the time series for each box (5 degrees latitude and 100 hPa), using 2 harmonics Focus on vertical gradients

Northern Extratropical Lower Troposphere (LT, surface 700hPa) and Upper Troposphere (UT, 700hPa to 300hPa)

Weighting average using cos(latitude)

➤ Repeat for every model output using CO2.X mask

HIPPO Seasonal CO2.X Amplitudes

Large improvements in representing CO₂ vertical gradients
 Retrieved fluxes do not show vertical error dependence

Posterior fluxes and Global Carbon Project

Posterior fluxes and Global Carbon Project

Conclusions

- Analysis of carbon fluxes estimated by a set of inverse models show good consistency, but spread remains in the spatial attribution of land sinks
- The transport errors are not clearly responsible for those fluxes differences
- Error in prior Fossil Fuel emissions is compensated by changes in other estimates such as AGR, or land sink [Saeki and Patra 2017]
 The spread in prior FF emissions is larger than GCP error and of similar magnitude to results spread
- As previously shown [Peylin et al., 2013], the results are sensitive to atmospheric network, so satellite observations from OCO2 may help

Thanks for your attention

Posterior fluxes and Global Carbon Project

