Implications of the Continued Increase in Atmospheric Methane Burden

E. Dlugokencky¹, M. Crotwell^{1,2}, A. Crotwell^{1,2}, P.M. Lang¹, L. Bruhwiler¹, A. Wang¹, K. Thoning¹ ¹NOAA ESRL GMD, ²CIRES

- The increase since 2007 started abruptly
- GR suggests tropics are important
- $\delta^{13}C(CH_4)$ is decreasing
 - Constrains possible drivers
- Not likely increased FF emissions
- Not likely increased Arctic emissions

Spatial Patterns

- The increase since 2007 started abruptly
- GR suggests tropics are important
- $\delta^{13}C(CH_4)$ is decreasing
 - Constrains possible drivers
- Not likely increased FF emissions
- Not likely increased Arctic emissions

What does $\delta^{13}C$ tell us?

- Schaefer et al., Nature, 2016
 - Increased microbial emissions outside Arctic
 - More likely agricultural sources than wetlands
- Nisbet et al., GBC, 2016
 - Increased microbial emissions in tropics
 - Wetlands and ag sources could contribute
 - Role for meteorology
 - Unlikely that changing lifetime contributed

- The increase since 2007 started abruptly
- GR suggests tropics are important
- $\delta^{13}C(CH_4)$ is decreasing – Constrains possible drivers
- Not likely increased FF emissions
- Not likely increased Arctic emissions

Fossil CH₄ emissions not increasing (Schwietzke et al., Nature, 538, 88-91, 2016)

- The increase since 2007 started abruptly
- GR suggests tropics are important
- $\delta^{13}C(CH_4)$ is decreasing
 - Constrains possible drivers
- Not likely increased FF emissions
- Not likely increased Arctic emissions

Arctic permafrost and clathrates?

ENSO Phase: Precipitation

Conclusions

- Increased CH₄ GR starting in 2007
 - Initiated by tropical wetlands
 - Consistent with: abrupt timing, ENSO, spatial patterns, and observed $\delta^{13}C$ (CH_4)
 - Sustained by increased agricultural emissions
 - Potential contribution from changing lifetime
- Potential Climate Feedback
 - Connection with meteorology
 - Should we be concerned?

SINE LATITUDE

Source: Carl Brenninkmeijer

Why is CH₄ Important?

- 0.51* W m⁻² RF in 2016 (CO₂: 1.99 W m⁻²)
 ΔRF = 25 mW m⁻² since 2006
- ~0.3 W m⁻² indirect RF (O_3 and H_2O)
- Drivers behind current trends are poorly understood
 - Emissions? If so, which sources?
 - Sink? If so, by what mechanism?

Global CH₄ Budget by Source

Source	Bousquet (Tg/yr)	IPCC Range (Tg/yr)
Anthropogenic		
Energy	110±13	74-106
Enteric fermentation	90±14	76-92
Rice agriculture	31±5	31-112
Biomass burning	50±8	14-88
Waste	55±11	35-69
Natural		
Wetlands	147±15	100-231
Termites	23±4	20-29
Oceans	19±6	4-15
Total	525±8	503-610
Sinks	Bousquet (Tg/yr)	IPCC (Tg/yr)
Troposphere	$448{\pm}1$	428-511
Stratosphere	37±1	30-45
Soil	21±3	26-34
Total	506	492-581

Bousquet et al., 2006, Nature, 443, 439-443, doi:10.1038/nature05132.