10 years of observation for greenhouse gases by commercial airliner in the CONTRAIL project

3. Japan Airlines, 4. National Institute of Polar Research, 5. Tohoku University

Outline

- 1. What is "CONTRAIL"
- 2. Equipment
 - ASE, MSE, CME
- 3. Results: seasonal CO₂ distributions
- 4. Inter-annual variations of CO₂
- 5. Summary
 - Accessibility of the data

1. What is "CONTRAIL"

- Comprehensive Observation Network for TRace gases by AirLiner
- NIES, MRI, JAL, JAMCO, JAL foundation
 - 1. Flask samplings:

Australia-Narita since 1993 (from former JAL project), Paris-Haneda since 2012

2. in-situ CO₂ observations in wide regions since 2005

2. Equipment

ASE: Flask sampling for several greenhouse gases

- mixing ratios of CO₂, CH₄, N₂O, SF₆, CO, and H₂
 - Isotope analysis of CO₂, CH₄ by NIES or Tohoku Univ. (Umezawa et al., 2012, ACP)
- Long record more than 20 years between Australia and Japan (Matsueda et al., 2015, GRL)
- Can be installed on only 777-200ER
- Not used in the regular flights to Europe, nor Australia (May, 2017)

In case we can not use 777-200ER...

Manual Sampling Equipment

- fill the data gap due to changes of aircraft assignment
- sampled by one of 4 researchers (CDG) or JAL personnel (SYD)
- use air-outlet nozzle in the cockpit on 777-300s
- CDG-HND since Apr. 2014, SYD-NRT from Nov. 2015 to Mar. 2017
- Tough work; 12 samplings during a 12 hours flight, and 3 hours stay in CDG airport
- My one-day trips to CDG: in Jan., Aug., and Oct. 2017.

CME: High frequent CO₂ observation

- 10 sec average during ascending/descending ~ 100 m in vertical
- 1 min average during the cruising flight ~ 10 km in horizontal
- 1-2 month operation (usually on 3 aircraft simultaneously)
- real time control by aviation information (ARINC)
- onboard calibrations; high accuracy ±0.2 ppm
- Several modifications, update/amend FAA/STC (2008, 2011, 2014, 2015, 2017)

3. Results: seasonal CO₂ distributions

Distributions in the Upper Troposphere/Lower Stratosphere

4. Inter-annual variations of CO₂

Intensive Biomass Burnings in Indonesia in 2015

Oct. 21, 2015 Visible image from Himawari-8 (GMS)

Luckily, we have many CME flights to SIN both in 2014 and 2015

Vertical profiles of CO₂ over Singapore in Sep.-Oct.

Can we detect inter-annual variations ?

Our observation largely depends on aircraft assignment <-> surface stations, satellites

Example for number of data in 30S-20S from flights between Australia and Japan

¹¹

Check robustness by sub-sampling method

Use all available flights -> linear trend, climatological seasonal changes, anomaly, growth rates

Use 30 % of all flights by random selections -> linear trend, climatological seasonal changes, anomaly, growth rates

X 20 cases

Similar growth rates

High representativeness in the region
may be trustworthy

Results over Eurasian continent ?

Similar linear trend, Seasonal phase, amplitude

Based on 10 years observations

Less reliable for changes in growth rates

Especially after 2014 with less observations

Need more observations
for regions with large variabilities

Effect from ENSO in 2015/2016?

Large anomalies in 2016 in western Pacific - Highest growth rates in these 10 years

Still need to check for data in 2015-2016

- CME stabilities, Standard gases
- End effects, Dependencies on flight routes, $\Delta \Theta$ analysis
- Sub-sampling limitations with less data period/region4

5. Summary

- Observations for greenhouse gases by airliner
- Flask samplings since 1993 over the western Pacific
- In-situ CO₂ observations over the past 10 years since 2005
 - More than 8 million CO₂ data from about 14000 flights
 - Spatial distributions and seasonal changes of CO₂ in wide regions
- Large anomalies of CO₂ in 2016
 - May reflect ENSO in 2015/2016
 - Also need to check robustness of the trend analysis for end-effect, instrumentations such as standard gases

Accessibility of the data

- Please visit CONTRAIL WEB (http://www.cger.nies.go.jp/contrail/index.html)
- Available according to the CONTRAIL data protocol
 - Already provided to GOSAT, OCO-2 team, ...
- Flask CO₂ data(~Dec. 2015) are available at WDCGG/ObsPack
- Just submitted updated CME data(~2010) to ObsPack
- Plan to open the data at NIES server.
- Contact PIs for recent data, other flask data, or details

Acknowledgements

- many engineers in the Japan Airlines and JAMCO Tokyo
- Dr. Katsumata, Ms. Matsuura, and Sandanbata (NIES) for sample analysis
- Support by Environment Research and Technology Development Fund / Global Environment Research Account for National Institutes of the Ministry of the Environment in Japan
- Support for sampling over Siberia by GRENE Arctic Climate Change Research Project, and Arctic Challenge for Sustainability

the CONTRAIL logo on the Boeing 777-200ER (JA705J and JA707J).

CONTRAIL data has been used in many works

•

- GOSAT or other remote sensing validation
- CO₂ by TANSO-SWIR (Araki et al., 2010, etc.)
- CH₄ by TANSO-SWIR (Inoue et al., 2014) •
- CH₄ by TANSO-TIR (Saito et al., 2012)
- TCCON (Wunch et al., 2010, etc.)
- AIRS, IASI (Crevoisier et al., 2004; 2010)
- TES (Kulawik et al., 2010)
- 2. Flux estimate with CONTRAIL data
- Impact on India (Niwa et al., 2012)
- Impact on China (Jiang et al., 2014)

Accessibility of the data

CONTRAIL NIES

- 3. Simulated CO₂ validation
 - Assimilation system (Engelen et al., 2005)
 - Latitudinal CO₂ distribution (Nassar et al., 2010)
 - South Asia (Patra et al., 2011)
 - Latitudinal gradient (Miyazaki et al, 2009)
 - Time series over western Pacific (Feng et al., 2011)
 - Multi model comparison (Niwa et al., 2011; Houweling et al., 2015)
- 4. Collaborative works with other programs
 - IAGOS (Volz-Thomas et al., 2009), CARIBIC (Schuck et al., 2012), Tohoku Univ. (Ishijima et al., 2010, Umezawa et al., 2012)

- Please visit CONTRAIL WEB (http://www.cger.nies.go.jp/contrail/index.html)
- Available according to the CONTRAIL data protocol
- Some part of Flask/CME data are available at WDCGG/ObsPack
- Contact PIs for recent data, other flask data, or details