Nitrous oxide (N₂O) emissions estimated with the Carbon Tracker Lagrange North American regional inversion framework

Cynthia Nevison¹, Arlyn Andrews², Kirk Thoning², Ed Dlugokencky², Colm Sweeney², Eri Saikawa³, Joshua Benmergui⁴, Scot Miller⁵

¹INSTAAR, University of Colorado, Boulder, ²NOAA/GMD/CCGG, ³Emory University, ⁴Harvard, ⁵Stanford

> GMAC Annual Meeting, Boulder CO Tuesday, May 23, 2017

Acknowledgements NOAA Climate Program Office AC4 Lei Hu

Nitrous Oxide (N₂O)

Natural, long-lived GHG produced mainly by microbes, responsible for 6% of anthropogenic greenhouse forcing.

Carbon vs. N₂O Tradeoffs

N₂O release from agro-biofuel production negates global warming reduction by replacing fossil fuels

P. J. Crutzen^{1,2,3}, A. R. Mosier⁴, K. A. Smith⁵, and W. Winiwarter^{3,6}

¹Max Planck Institute for Chemistry, Department of Atmospheric Chemistry, Mainz, Germany ²Scripps Institution of Oceanography, University of California, La Jolla, USA

³International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria

⁴Mount Pleasant, SC, USA

Carbon Tracker Lagrange Regional inverse modeling framework

- Jan 2007-Aug 2014, daily time step,
- North America 1°x1° spatial resolution
- H matrix from STILT particle back trajectories
- Solve $L_s = 0.5^* (z-Hs)^T R^{-1} (z-Hs) + 0.5 (s-s_p)^T Q^{-1} (s-s_p)$
- Ground and aircraft data from NOAA GGGRN

NOAA data compared to Empirical Background

Dual spring maxima in excursions above background at WBI (Iowa)

Annual Mean Posterior Flux (2008-2013)

shat output

pmol/m2/s

Uncertainty reduction greatest in Midwestern corn/soybean belt

Seasonal and interannual variability in posterior N₂O flux from Midwest corn/soybean belt (38-43°N)

Changing use of United States Corn Crop about 40% of total production is classified as "other" than food

Data from FAOSTAT

Fossil CO₂ emissions avoided due to biofuel vs. N₂O produced (2008-2013)

130 Tg/yr "other" Corn * 0.44gC/g biomass*0.37 gC in fuel/gC in biomass

300 million barrels/yr EtOH* 1 Mg EtOH/8 barrels*24 gC/46 gEtOH

(0.43 Tg N₂O-N -0.08[‡])*300 mol CO₂,eq/mol CO₂ (GWP)* 12g C/28 g N [‡]EDGAR industrial/energy source

total corn/soybean N_2O emissions = 0.045 Pg $CO_{2,eq}$ Attribute up to 40% of this to "other" corn

biofuel-related N₂O emissions ~ 0.02 Pg $CO_{2,eq}$

Conclusions

- 1. North American N₂O emissions = 1.5 ± 0.2 Tg N/yr with hotspot (~25% of total) in Midwestern corn/soybean belt.
- 2. Variability in N₂O emissions from corn/soybean belt is influenced by both N fertilizer inputs and climate.
- 3. Growing corn for biofuel may not lead to a net reduction in greenhouse gas emissions.

Annual Mean Posterior N₂O Flux

Globally important nitrous oxide emissions from croplands induced by freeze-thaw cycles

Claudia Wagner-Riddle^{1*}, Katelyn A. Congreves¹, Diego Abalos², Aaron A. Berg³, Shannon E. Brown¹, Jaison Thomas Ambadan³, Xiaopeng Gao⁴ and Mario Tenuta⁴

Seasonal freezing induces large thaw emissions of nitrous oxide, a trace gas that contributes to stratospheric ozone destruction and atmospheric warming. Cropland soils are by far the largest anthropogenic source of nitrous oxide. However, the global contribution of seasonal freezing to nitrous oxide emissions from croplands is poorly quantified, mostly due to the lack of year-round measurements and difficulty in capturing short-lived pulses of nitrous oxide with traditional measurement methods. Here we present measurements collected with half-hourly resolution at two contrasting cropland sites in Ontario and Manitoba, Canada, over 14 and 9 years, respectively. We find that the magnitude of freeze-thaw-induced nitrous oxide emissions is related to the number of days with soil temperatures below 0 °C, and we validate these findings with emissions data from 11 additional sites from cold climates around the globe. Based on an estimate of cropland area experiencing seasonal freezing, reanalysis model estimates of soil temperature, and the relationship between cumulative soil freezing days and emissions that we derived from the cropland sites, we estimate that seasonally frozen cropland contributes 1.07 \pm 0.59 Tg of nitrogen as nitrous oxide annually. We conclude that neglecting freeze-thaw emissions would lead to an underestimation of global agricultural nitrous oxide emissions by 17 to 28%.

