Surface-measured trends of aerosol optical depth as an indicator of stratospheric aerosol trends

John A. Augustine¹ John E. Barnes¹ and Jean-Paul Vernier²

> ¹ESRL Global Monitoring Division ²NASA Langley

> > GMAC May 23, 2017

Multi-Filter Rotating Shadowband Radiometer

U.S. AOD Climatology 1997 to 2016

U.S. annual average AOD (500 nm)

Monthly average AOD

Goodwin Creek, Mississippi

Monthly average AOD

Bondville, Illinois

Monthly average AOD

Fort Peck, Montana

Time series of backscatter from the Cloud-Aerosol LIDAR Orthogonal Polarization (CALIOP) aboard NASA's CALIPSO satellite

Upper troposphere – lower stratosphere Averaged over $30^{\circ} - 60^{\circ}$ N

Source: Jean-Paul Vernier, NASA Langley

CALIOP Monthly Mean Stratospheric AOD (532 nm) for the Northern Hemisphere 30° – 60° N Tropopause to 35 km

Volcanic Eruptions 2000 to 2011

From Andersson et al. (2015) Nature Communications

Table 1 | Volcanic eruptions in the 21th century that affect (or have the potential to affect) the aerosol loading of the stratosphere.

Volcano		Date	Lat.	Long.	VEI*	SO ₂ (Tg)
Ulawun	UI	29 Sep 2000	5° S	151° E	4	t
Sheveluch	Sh	22 May 2001	57° N	161° E	4	†
Ruang	Ru	25 Sep 2002	2° N	125° E	4	0.03 (ref. 50)
Reventador	Ra	3 Nov 2002	0° S	78° W	4	0.07 (ref. 50
Anatahan	At	10 May 2003	16° N	146° E	3	0.03 (ref. 50)
Manam	Ma	27 Jan 2005	4° S	145° E	4	0.09 (ref. 50)
Sierra Negra	Si	22 Oct 2005	1º S	91° W	3	†
Soufrière Hills	So	20 May 2006	17° N	62° W	3	0.2 (ref. 51)
Rabaul	Rb	7 Oct 2006	4° S	152° E	4	0.2 (ref. 50)
Jebel at Tair	Je	30 Sep 2007	16° N	42° E	3	0.08 (ref. 52)
Chaitén	Ch	2 May 2008	43° S	73° W	4	0.01 (ref. 53)
Okmok	Ok	12 Jul 2008	53° N	168° W	4	0.1 (ref. 52)
Kasatochi	Ka	7 Aug 2008	52° N	176° W	4	1.7 (ref. 52)
Redoubt	Re	23 Mar 2009	60° N	153° W	3	0.01 (ref. 54)
Sarychev	Sa	12 Jun 2009	48° N	153° E	4	1.2 (ref. 55)
Eyjafjallajökull	Ey	14 Apr 2010	64° N	20° W	4	†
Merapi	Me	5 Nov 2010	8° S	110° E	4	0.4 (ref. 56)
Grimsvötn	Gr	21 May 2011	64° N	17° W	4	0.4 (ref. 57)
Puvehue-Cordón Caulle	Pu	6 Jun 2011	41° S	72° W	5	0.3 (ref. 57)
Nabro	Na	12 Jun 2011	13° N	42° E	4	1.5 (ref. 57)

Andersson et al. (2015) *Nature Communications* CALIOP AOD Tropopause to 35 km (thick line top panel)

Mauna Loa ground-based LIDAR stratospheric AOD 532 nm 15.8 to 33 km

CALIOP space-based LIDAR (30° -60° N) stratospheric AOD 532 nm Tropopause to 35 km

AOD trends (per decade)

	2006 – 2011	2011 – 2015	
Stratosphere			
Calipso (30-60°N)	+.005	009	
Surface-based tota	al column AOD	minima	
U.S. Average	+.019	044	
Desert Rock NV	+.005	019	
Boulder CO	+.027	046	
Fort Peck MT	+.024	035	
Goodwin Creek MS	+.012	041	
Bondville IL	014	040	
Sioux Falls SD	+.061	051	

Summary

- Trends in annual minima of surface-based total column AOD do indicate the direction of stratospheric AOD trends
- Surface-based AOD minima trends are typically greater than stratospheric trends – dry sites best indicate actual behavior of stratospheric AOD
- Minor volcanic eruptions can have a non-negligible influence on stratospheric aerosol forcing
- Radiative effects of some minor volcanoes can last on the order of a year with maximum forcing approaching -1 Wm⁻²