Dual Frequency Comb Measurements of Greenhouse Gases Over Boulder

Naxman,¹ K. Cossel,¹ G. W. Truong,^{1,2} F. Giorgetta,¹ W. Swann,¹ S. Coburn,³ R. Wright,³ G. Rieker,³ I. Coddington,¹ N. Newbury¹

> Global Monitoring Annual Conference May 24, 2017

Applied Physics Division, NIST Boulder ²Now at Crystalline Mirror Solutions, Santa Barbara, C ³Precision Laser Diagnostics Lab, CU Boulder

Motivation: Tiered observing system for urban measurements

NASA/JPL Megacities project

Frequency Comb: Stabilized Mode-Locked Laser

NIS

Broadband light source with:

- Specific, individual frequencies
- No moving parts
- ~0.0067 cm⁻¹ point spacing
- <0.001 cm⁻¹ instrument line shape
- Rapid scanning (~2 ms per spectrum)
- Calibration-free
- Collimated (can send long distances)

Spectroscopy

Open-path dual-comb spectroscopy

How well does it work? Dueling DCS

Identical Atmospheric Absorbance Spectra

Identical Atmospheric Absorbance Spectra

Identical Atmospheric Absorbance Spectra

Excellent agreement in measured concentrations between systems

30-second time resolution data.

Systems agree to 0.14% for CO_2 and 0.35% for CH_4 over two weeks with no bias correction 10-100x better than other open-path system intercomparisons

Waxman et al. (2017) AMTD

DCS comparison with CRDS

Mean differences: -3.4 ± 3.4 ppm CO₂, 17 ± 15 ppb CH₄, and 580 ± 462 ppm H₂O

Hub and spoke across Boulder

Hub and spoke data for 1.5 months

Goal: understand potential sources, magnitude of city emissions

Case study: Oct. 22 city enhancement

Consistent CO₂ enhancement over the city.

$$Q_i = u\Delta y H\left(\frac{c_{CO2,City}(t) - c_{CO2,City}(0)e^{-tu/\Delta x}}{1 - e^{-tu/\Delta x}} - c_{CO2,Ref}(t)\right)$$

Derivation in Seinfeld and Pandis

 Q_i = city emissions u = wind speed Δy = width of box (perpendicular to wind, 2.7 km) H = height of box (300 m, estimated from HYSPLIT vertical wind) Δx = length of box (parallel to wind, 5.5 km)

City transportation emissions: 4.5x10⁵ metric tons CO₂ from of vehicle travel annually (2015 inventory)

Assume:

- this covers 25% of the city traffic emissions
- emissions representative of 8 hours/day, 250 days/year (work days)
- \rightarrow estimate 6.4x10⁵ metric tons of CO₂ annually
 - likely includes some contributions from CU and DOC power plants

Conclusions

- DCS measurements are quantitative
 - Spectra are acquired quickly, with high resolution, and are line-shape-free
 - Two DCS systems agree to better than 0.14% for CO_2 and 0.35% for CH_4 .
 - Since this work, we may have identified source of discrepancy and improve future work.
- More work needs to be done on CO₂ and CH₄ cross sections
 - Likely source of disagreement between DCS systems and CRDS.
 - Upcoming lab project...
- Using a simple box model calculation, we measure ~150% of the city vehicle emissions inventory.
 - Refinement necessary but reasonable given that:
 - We likely also pick up emissions from the DoC and CU power plants and the NOAA boilers which do not count towards city vehicle emissions.

Backup Slides

Stabilized pulsed laser: the frequency comb

NIST

Frequency domain

Frequency

But pulses come every 5 ns \rightarrow very hard to measure

Hall and Hänsch, 2005 Nobel Prize

Two frequency combs: Dual comb spectroscopy

Interferograms arrive every 1.6 ms \rightarrow much easier to measure

Frequency Comb: Stabilized Mode-Locked Laser

Modelocked Laser

Frequency comb : Modes stabilized by locking two degrees of freedom

Each tooth can be 1 Hz wide