Improved mechanistic understanding of natural gas methane emissions from spatially-resolved aircraft measurements

Stefan Schwietzke^{1,2}, Gabrielle Pétron^{1,2}, Stephen Conley^{3,4}, Cody Pickering⁵, Ingrid Mielke-Maday^{1,2}, Edward J. Dlugokencky², Pieter P. Tans², Tim Vaughn⁵, Clay Bell⁵, Daniel Zimmerle⁵, Sonja Wolter^{1,2}, Clark W. King², Allen B. White², Timothy Coleman^{1,2}, Laura Bianco^{1,2}, Russell C. Schnell²

¹CIRES/CU Boulder, ²NOAA/ESRL Boulder, ³Scientific Aviation, ⁴UC Davis, ⁵Colorado State Univ.

Acknowledgments: K. Davis, S. Hanna, D. Allen, D. Cooley, A. Brandt, A. Karion, G. Etiope, R. Klusman, W. Angevine

Funding: DOE, NOAA, Southwestern Energy, XTO Energy, Chevron, Statoil, AGA, Colorado Energy Research Collaboratory

The oil and gas methane top-down (TD) vs. bottom-up (BU) phenomenon

Previous studies:

- CH₄ emission estimates from *top-down* (atmospheric) studies *greater than bottom-up* (inventory, component/facility) throughout the US
- Inventories may underestimate CH₄ emissions, miss sources

- Reconciliation of top-down & bottom-up through statistical accounting of *"super-emitters"*
- E.g., 2% of facilities responsible for half of the emissions

 Bottom-up Top-down Average March 25 March 27 March 30 Oct. 16 Oct. 19 Oct. 20 Oct. 28 120 0 20 40 60 80 100 Fossil Methane (Mg CH₄/h)

Adapted from Zavala-Araiza et al. 2015 Barnett study.

The Ugly Duckling: activity data from oil and gas production

Tier 1 Bottom-up

Stefan Schwietzke, NOAA/CIRES, May 2017

Fayetteville Shale 2015 study design (Tier 3 approach)

- Hourly activity data from nearly all operators in study area (99% of natural gas production and infrastructure)
- Simultaneous measurements at multiple scales/techniques

Top-down

Bottom-up

Stefan Schwietzke, NOAA/CIRES, May 2017

Fayetteville Shale 2015 study aircraft sampling overview

- 15 flights in 23 days (Sep/Oct)
- 2 flights (Oct 1 & 2) with ideal meteorological conditions for aircraft mass balance

- Remaining flights:
 - Identify larger emitting sub-regions incl. repeats to check consistency
 - Sample ethane: methane ratios for source attribution
 - Quantify CH₄ emissions from individual facilities

Stefan Schwietzke, NOAA/CIRES, May 2017

October 1, 2015 flight overview

150 km x 65 km box

First spatially-resolved aircraft-based CH₄ emission estimates for a basin

• Strong spatial correlation with well count ($R^2 = 0.81$ for ~2 km wide longitudinal bins)

Stefan Schwietzke, NOAA/CIRES, May 2017

First spatially-resolved aircraft-based CH₄ emission estimates for a basin

- Strong spatial correlation with well count ($R^2 = 0.81$ for ~2 km wide longitudinal bins)
- Also strong spatial correlation with natural gas production (R² = 0.75)

Stefan Schwietzke, NOAA/CIRES, May 2017

Substantial episodic emissions midday during aircraft sampling

Gas production normalized CH₄ emissions ("leak rate") in the West <u>double</u> compared to East

- About 1/3 of total CH₄ emissions → Explains
 ~2/3 of W-E difference in leak rate
- Midday peak vs. annual average!
 - Episodic sources partially responsible for day-to-day emission variability (can't tell without spatial analysis)

Stefan Schwietzke, NOAA/CIRES, May 2017

- First spatially-resolved aircraft-based CH₄ emission estimates for a basin
 - Used for a spatially/temporally resolved TD-BU comparison to understand TD-BU differences mechanistically rather than statistically
 - Important for prioritizing mitigation targets
- Episodic sources are large contributor to midday CH₄ emissions and drive "leak rate" difference in the basin
 - Temporal interpretation of TD estimates is key (peak emissions)
 - Cooperation / data sharing with local operators is essential (reported activity levels and equipment/facility counts)
 - Site access allows for measurement methods comparison