Spatial and Temporal Gradients in Atmospheric CO₂ and CO in the Los Angeles Megacity

K.R. Verhulst¹, J.B. Miller², V. Yadav¹, S. Lehman³, K. Gurney⁴, C. Miller¹, R. Duren¹, S. Newman⁵, M. Fischer⁶, J. Kim⁷, P.K. Salameh⁷, R.F. Weiss⁷, R. Keeling⁷, T. Pongetti¹ and C. Sloop⁸

¹NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109; 818-393-5817, E-mail: Kristal.R.Verhulst@jpl.nasa.gov ²NOAA Earth System Research Laboratory, Global Monitoring Division (GMD), Boulder, CO 80305

³Institute of Arctic and Alpine Research (INSTAAR), University of Colorado, Boulder, CO 80309

⁴Arizona State University, Tempe, AZ 85287

⁵California Institute of Technology, Pasadena, CA 91125

⁶Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720

⁷Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92037

⁸Earth Networks, Inc., Germantown, MD 20876

Global atmospheric observations show an unprecedented rise in atmospheric carbon dioxide (CO₂) levels since the preindustrial era. This trend correlates with estimates of CO_2 emissions from global fossil fuel consumption during the same period. Globally, urban regions account for ~70% of fossil carbon emissions; however, there are gaps in our understanding of the urban processes that influence carbon emissions. Measurements in urban areas are critical for linking atmospheric observations with fine-scale emissions data to understand the drivers of carbon emissions. The Los Angeles (LA) Megacities Carbon Project was established to develop and test robust techniques for monitoring distributions and trends of fossil carbon emissions in large cities (megacities.jpl.nasa.gov). The project includes a fifteen-node *in situ* greenhouse gas monitoring network spanning the LA metropolitan area and surrounding regions (Verhulst et al. 2017). We estimate "excess" CO2 and carbon monoxide (CO) levels relative to nearby background mole fractions, which result from changes in local emissions and meteorology. CO is commonly used as a tracer for anthropogenic fossil fuel carbon dioxide (CO₂fos), the mole fraction of CO₂ in dry air resulting from fossil fuel combustion relative to background, because it is co-emitted during the incomplete combustion of fossil fuels. Atmospheric CO measurements alone do not give a quantitative estimate of atmospheric CO₂ fos and require calibration using radiocarbon (¹⁴CO₂) observations. During the course of this study, ¹⁴CO₂ flask-sampling was conducted by NOAA/INSTAAR at 3 sites every ~3-4 days to derive atmospheric CO₂fos. CO₂fos signals derived from 14 CO₂ suggest that ~75% of the midday CO₂ enhancements are explained by variability in CO₂ fos, while the remainder may be attributed to biospheric fluxes. Utilizing the robust CO/CO₂ ratios and CO₂fos estimates derived from ¹⁴CO₂ allows approximation of a synthetic, continuous CO₃fos time series, CO₂fos_syn. CO₂fos_syn will be tested in our atmospheric modeling framework and compared with Hestia-LA, a bottom-up dataset quantifying anthropogenic CO₂ fos emissions that relies on a mixture of activity data, fuel statistics, direct flux measurement, and modeling algorithms. The ¹⁴CO₂ record in LA also allows us to assess uncertainties in CO₂fos fluxes determined using methods that rely on total CO₂ observations.

Figure 1. Time series of CO_2 fos simulated using the Hestia emissions (Gurney et al. 2012) and the WRF-STILT footprint model (black), daily CO_2 fos_syn (red) derived from 21:00 UTC *in situ* CO data, and observed CO_2 fos and CO_2 bio at a measurement site near Downtown LA (University of Southern California).