The OCO-2 Model Intercomparison Project Reveals Systematic Transport Model Effects on Inverse Model CO₂ Fluxes

<u>A.R. Jacobson^{1,2}</u>, A. Schuh³, S. Basu^{1,2}, B. Weir⁴, D.F. Baker⁵, K. Bowman⁶, F. Chevallier⁷, S. Crowell⁸, K.J. Davis^{9,10}, F. Deng¹¹, S. Denning³, L. Feng¹², D. Jones¹¹, J. Liu⁶ and P. Palmer¹²

¹Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO 80309; 303-497-4916, E-mail: andy.jacobson@noaa.gov

²NOAA Earth System Research Laboratory, Global Monitoring Division (GMD), Boulder, CO 80305

³Colorado State University, Fort Collins, CO 80523

⁴NASA Goddard Space Flight Center (GSFC), Greenbelt, MD 20771

⁵Cooperative Institute for Research in the Atmosphere (CIRA), Colorado State University, Fort Collins, CO 80521

⁶NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109

⁷Laboratoire des Sciences du Climat et de l'Environnement (LSCE), Institut Pierre-Simon Laplace, Orme des Merisiers, France

⁸University of Oklahoma, Norman, OK 73019

⁹Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, PA 16802 ¹⁰Earth and Environmental Systems Institute, The Pennsylvania State University, University Park, PA 16802

¹¹University of Toronto, Toronto, Ontario, Canada

¹²University of Edinburgh, Edinburgh, United Kingdom

The NASA Orbiting Carbon Observatory-2 (OCO-2) program has organized an atmospheric inverse model intercomparison activity, in which modeling groups have performed experiments assimilating OCO-2 retrievals and traditional *in situ* carbon dioxide (CO₂) measurements. This collection of inverse models is dominated by atmospheric transport simulated by two models: three use the Tracer Model, Version 5 (TM5) and four use Goddard Earth Observing System-Chem (GEOS-Chem). Forward simulations of CO₂ and sulfur hexafluoride (SF₆) in these two models reveal systematic differences in vertical-meridional transport, suggesting that GEOS-Chem moves tracer mass out of northern midlatitudes more quickly than TM5. In an inverse model framework, the ensemble of GEOS-Chem models retrieves a larger annual cycle of surface CO₂ fluxes in the large zonal band from the equator to 45°N. Since inverse models frequently simulate a net land sink by amplifying the annual cycle of prior models, one might expect that GEOS-Chem would have a larger net sink in this latitude range, but we find the opposite. The differences between the two models in seasonality and long-term mean fluxes are reversed north of 45°N. We provide potential explanations for these flux differences, and link them to transport processes using SF₆ constraints.

Figure 1. OCO-2 MIP fluxes estimated by GEOS-Chem ("GC", blue) and TM5 (red) transport in the latitude bands from the equator-45°N (bottom row) and from 45°N-90°N (top row). These optimized fluxes are derived by assimilation of traditional *in situ* measurements. Seasonality is revealed by monthly fluxes (left column) and the annual means are portrayed in the right column.