(54-180321-A) Successes and Challenges of Spectroscopic Based Techniques in Enteric Methane Measurements

W. Gichuhi¹ and L. Gamage²

¹Department of Chemistry, Tennessee Tech University, Cookeville, TN 38505; 931-372-3499, E-mail: wgichuhi@tntech.edu ²School of Environmental Studies, Tennessee Technological University, Cookeville, TN 38505

Whereas livestock methane (CH₄) emissions are not the dominant overall source for the observed sharp rises in global CH₄ levels, the occurrence of significant uncertainities in the magnitude of the existing livestock CH₄ emission inventories calls for more experimental measurements of enteric CH₄. One major challenge associated with accurate experimental measurements of CH₄ production from livestock is the fact that the grazing animals are a representation of mobile emission sources with activity-related emission patterns. In this presentation, we assess the application of spectroscopic-based techniques in measuring enteric methane. The efficacy of a portable wavelength-scanned CRDS (Picarro G2401) in estimating CH₄ production from ruminants in a feedlot, based on the measured CH₄:carbon dioxide (CO₂) ratio from exhaled breath and the amount of CO₂ produced per Heat Producing Unit (HPU) is examined and compared with other spectroscopic techniques that are based on natural grazing conditions such as the open-path laser technique. Our measurements shows daily linear regression fits of the CH₄ to CO₂ concentration that have high correlation (R²=0.91), allowing for direct estimation of enteric CH₄ emission factors

Figure 1. Daily and hourly averages of the linear regression ratios of CH₄:CO₂ (ppb/ppm).