



- feeds in the rumen.
- into CH₄.





- open field (figure 3).

Figure 2: The schematic diagram of Cavity ring-down spectroscopy set-up and the associated components in the laboratory.

# **Estimation of Enteric Methane Emissions in Ruminants Using CO<sub>2</sub>:CH<sub>4</sub> Ratio Obtained with a Wavelength-scanned Cavity Ring-down Spectrometer** <sup>1,2</sup>Lahiru P. Gamage\* and <sup>1</sup>Wilson K. Gichuhi <sup>1</sup>Department of Chemistry and <sup>2</sup>School of Environmental Studies, Tennessee Tech University, 1 William L Jones Dr, Cookeville, TN 38505. **CH**<sub>4</sub> **Production Estimation in Ruminants** $CH_4:CO_2$ Correlation $\succ$ Average background concentrations of both CH<sub>4</sub> and CO<sub>2</sub> each day was Gate 1 determined. $\succ$ CH<sub>4</sub> and CO<sub>2</sub> concentrations above the background were obtained after subtracting average background concentrations. Wind direction $\succ$ CH<sub>4</sub>:CO<sub>2</sub> ratio was determined using above background measurements in each day. ont side of **CH**<sub>4</sub>:**CO**<sub>2</sub> Ratio Technique Figure 3: Hyder-Burks pavilion farm in Cookeville, TN and description of dimensions of $CO_2$ production (L day<sup>-1</sup>) = HPU animal<sup>-1</sup> \* 180 L CO<sub>2</sub> HPU<sup>-1</sup>h<sup>-1</sup> \* 24 the barn building and CRDS set-up inside the barn. **Results and Discussion** $\therefore$ CH<sub>4</sub> production (L day<sup>-1</sup>) = CO<sub>2</sub> production (L day<sup>-1</sup>) \* CH<sub>4</sub>:CO<sub>2</sub> ratio $\succ$ CO<sub>2</sub> production in ruminant was calculated using above standard equations. Day 1 - CO, (ppm HPU was calculated using body weight of cow, Average milk production and CH<sub>4</sub> (ppm) —% Ң,О average days of pregnancy per year. $\blacktriangleright$ CH<sub>4</sub> production was calculated using experimentally determined average $CH_4:CO_2$ ratio. **Table 3:** Calculated $CO_2$ and $CH_4$ production based on the heat produced per cow with different sizes, and daily average milk production. CH<sub>4</sub>:CO<sub>2</sub> ratio Body weight **0.100**<sup>1</sup> Day 2 600 600 647 **0.099**<sup>2</sup> **0.060**<sup>3</sup> 400 600 0.053±0.003<sup>4</sup> 400 Day 3 647 > Total enteric CH<sub>4</sub> in Tennessee based on 1,720,000 cows = 117 ± 7 Gg yr<sup>-1</sup>.<sup>4,5</sup> > Total enteric CH<sub>4</sub> emission in Putnam County, TN based on 21,000 cows = 1.43 $\pm 0.08 \text{ Gg yr}^{-1.4,5}$ **Conclusions and Future Directions** 03:16 pm $\succ$ The similarity between the total amount of enteric CH<sub>4</sub> predicted by EPA inventory 02:16 pm and the value obtained from the present study indicate a promising future **Figure 5**: Ambient air measurements of $CO_2$ , $CH_4$ on 03/30/2017 (day application of the $CH_4$ : $CO_2$ ratio method in measuring enteric $CH_4$ from larger 1), 03/31/2017 (day 2) and 04/07/2017 (day 3) after background groups of livestock in the United States. subtraction. In-situ % $H_2O$ also included in blue color each day. Further refinement of these measurements are needed to obtain a 24-h pattern **Table 2**: Summary of hourly ratio averages and daily averages 0.5 hours average hour average Daily average 2 hours average more precisely with known dry matter intake from the grazing cattle. 52.11 ± 2.60 55.38 ± 2.77 62.63 ± 3.13 52.51 ± 2.62 69.87 ± 3.49 **Selected References** 33.69 ± 1.68 42.40 ± 2.12 51.12 ± 2.56 Bai, M.; Griffith, D. W. T.; Phillips, F. A.; Naylor, T.; Muir, S. K.; McGinn, S. M.; Chen, D., Correlations of methane 127.20 ± 6.36 76.36 ± 3.82 54.21 ± 2.71 25.52 ± 1.28

32.06 ± 1.60

40.53 ± 2.03

75.11 ± 3.76

29.30 ± 1.47

55.74 ± 2.79

73.31 ± 3.66

46.06 ± 2.30

ppm/ppm).

57.82 ± 2.89

42.52 ± 2.13

59.79 ± 2.99

56, (1), 108-115

56.36 ± 2.82

50.31 ± 2.51

- Census for Agriculture: Washington, D.C. 2012; Last accessed 2/25/2018.
- Financial support from Tennessee tech Faculty start-up grant Faculty development grant from College of Arts and Science
- Support from Chemistry department, TTU



| Average milk | Average  | HPU per | CO <sub>2</sub> production | CH <sub>4</sub> production |
|--------------|----------|---------|----------------------------|----------------------------|
| production   | days     | animal  | in the ruminants           | (L/cattle. Day)            |
| kg/day       | pregnant |         | (L/day)                    |                            |
| 20           | 100      | 0.957   | 4134                       | 413                        |
| 30           | 0        | 1.177   | 5084                       | 508                        |
| 0            | 0        | 0.679   | 2933                       | 293                        |
| 20           | 100      | 1.135   | 4903                       | 490                        |
| 30           | 100      | 1.355   | 5853                       | 585                        |
| 40           | 0        | 1.559   | 6734                       | 673                        |
| 32           | 210      | 1.576   | 6810                       | 681                        |
| 32           | 190      | 1.556   | 6724                       | 668                        |
| 20           | 100      | 0.957   | 4134                       | 248                        |
| 30           | 0        | 1.177   | 5084                       | 305                        |
| 0            | 0        | 0.679   | 2933                       | 176                        |
| 20           | 100      | 1.135   | 4903                       | 294                        |
| 30           | 100      | 1.355   | 5853                       | 351                        |
| 40           | 0        | 1.559   | 6734                       | 404                        |
| 9            | 283      | 1.063   | 4592                       | 243 ±14                    |
| 9            | 283      | 1.241   | 5361                       | 284 ±16                    |
| 9            | 283      | 1.281   | 5533                       | 293 ±17                    |
| 9            | 283      | 1.303   | 5630                       | 298 ±17                    |
| <br>9        | 283      | 1.308   | 5651                       | 299 ±17                    |

and carbon dioxide concentrations from feedlot cattle as a predictor of methane emissions. Anim. Prod. Sci. 2015,

Haque, M. N.; Cornou, C.; Madsen, J., Estimation of methane emission using the CO<sub>2</sub> method from dairy cows fed concentrate with different carbohydrate compositions in automatic milking system. Livest. Sci. 2014, 164, 57-66. Madsen, J.; Bjerg, B. S.; Hvelplund, T.; Weisbjerg, M. R.; Lund, P., Methane and carbon dioxide ratio in excreted air for quantification of the methane production from ruminants. Livest. Sci. 2010, 129, (1), 223-227. Gamage, L.; Gichuhi, W., Efficacy of a Wavelength-Scanned Cavity Ring-Down Spectroscopic Technique in Estimating Enteric Methane Emissions in Ruminants, ACS Earth Space Chem. 2018, A-J. USDA: 2012 Census of Agriculture USDA, National Agricultural Statistics Service; https://www.agcensus.usda.gov/Publications/2012/Full\_Report/Volume\_1,\_Chapter\_2\_US\_State\_Level/; USDA

