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the globe as a whole.

Using only at data from the GGRN network, we observe that inter-annual variability e The seasonal Cycle of SF6 In the Arctic shows an anomalous attenuation in 2014, which Is also
appears to be correlated with ENSO, with longer (slower) exchange times during El Nifo, shown in N.O data

and shorter (faster) exchange times during La Nifa periods. Some of the more prominent 2 ]

excursions do not appear to be correlated with ENSO (e.g. 2001, 2003).
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