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Why Propane?

|t is the second most abundant non-methane hydrocarbon (NMHCs) after ethane
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|t contributes to photochemical air pollution, including ozone and aerosol formation 55 1000 a s—————— ——— b [ . . . =
» It is useful for distinguishing thermogenic from natural emissions of methane 900 o) | = ~ 7 Lo
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What have we already known about U.S.

- Optimized prior from population and production of oil and gas; scaled priors
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« Higher emissions are expected during winter than summer (Fig. 3).
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Previous regional atmosphere-based “top-down” studies B~ Fig. 7. Derived monthly propane emissions from different priors and inverse modeling methods. Higher

winter emissions than summer emissions are derived, with seasonal variations of propane/propene
Inventory size and propane demand.
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suggest propane emissions:

« Smaller scale inventory estimates (State of Colorado) largely underestimate propane
emissions in recent years (Petron et al., 2012, 2014)

« Propane emissions are primarily from natural gas production and processing,
liquefied petroleum gas production, and geological seeps (Peischl et al., 2013;

Wennberg et al., 2012) Fig. 3. U.S. anthropogenic propane emissions reported by inventories:
MACCity, RETRO, POET, and HTAP.
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Using inverse modeling of atmospheric data to infer propane emissions Flux domain broadened to '
include the ocean
» In general, this is how inverse models work for a chemically-inert tracer: Annual Emissions and Emission Trend: | N
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> Yobs = Zbg exp j— K‘[OH ]d'[ +H exp I— K[OH ]dt S+ & the rest of equations the same yield the posterior ' ofrgasTpopuiation Fig. 8 U.S. annual emi_ssi_ons of propane derived from inverse analyses of observations for 2008 — 2014 with anc_l without considering OH
- : : . : : Note that, lower BIC score indicates better spatial model chemistry. Propane emissions estimated from a 1C-based tracer ratio method for 2010 — 2012 from a subset of air samples collected from
Rewritten as. 0 0 solution of propane emissions with OH loss included towers and aircraft in a previous study only using data from two east coastal sites (Miller et al., 2012) are also shown.




