¹ Caltech	TCCON Updates and	3 JET Propulsion Laboratory California Institute of Technology
	California motitate er reennelegy	
2 Weight Physics UNIVERSITY OF		

TCCON

The Total Carbon Column Observing Network (or TCCON), currently made up of 26 sites internationally, is a network of ground-based Fourier Transform Spectrometers that record direct solar spectra in the near-infrared. Accurate and precise column-averaged abundances of CO₂ (as well as of other atmospheric constituents - CH₄, N₂O, HF, CO, H₂O, and HDO) are retrieved from these spectra. Dating back to 2004, TCCON data have proven to be valuable in providing ground truth for satellite measurements of CO₂ and CH₄ column

Extended Measurement Capabilities into Mid-IR

Several TCCON sites (Caltech and Lamont) have installed a dual InGaAs/InSb detector arrangement to extend measurement capabilities into the mid-IR and allow for retrievals of HCN, C₂H₆, OCS, NO₂, O₃, and CH₂O. These products will be released as part of the next version of the TCCON retrieval algorithm (GGGNext).

0.3	Pasadena, 20180201-20180206					
		• 1	· all			
	2		 flag=0 			

abundances and in evaluating large-scale carbon models and improving global estimates of the sources and sinks of CO_2 and CH_4 .

TCCON Site Locations

- Co-Is: Orfeo Colebatch, Joseph Mendonca, Greg Neufeld, Stephen Springett, Kris Kuntz, Norton Allen, Jean-Francois Blavier
- Collaborators: Doug Worthy, Bob Kessler, Kimberly Strong
- Operational as of 2016-10-07

Burgos, Philippines

- Location: 18.5325°N, 120.6496°E, 35 masl
- Operated by National Institute for Environmental Studies, University of Wollongong, Energy Development Corporation and supported in part by the GOSAT project • Operational as of 2017-03-03

Future sites: Edwards, CA, USA; Harwell, Oxfordshire, UK, Hefei, Anhui, China, and Los Alamos, NM, USA

Column averaged dry-air mole fractions

- XCO₂ have increased by more than 40 parts per million (ppm) since TCCON measurements commenced, approaching or exceeding 410 ppm at all sites in the Northern Hemisphere this past winter (2017-18).
- XCO is available as a part of TCCON's standard product, with good coverage back to 2004. Observations also indicate that CH₄ concentrations have increased substantially since 2006–07.

GGGNext: Improved Precision

We are completing the development of the next version of the TCCON retrieval algorithm. We expect substantial improvements in a number of products.

- Improved our priors by
 - Using new in situ network, aircraft, and AirCore observations
 - Putting better constraints on stratosphere (with Arlyn Andrews)
 - Updated handling of specific humidity
- Improved representation of instrument transmission function in the retrievals
- Improved spectroscopy through
 - Refined descriptions of O₂, CO₂, CH₄, and H₂O absorption
 - Implemented line mixing for O_2 , CH_4 , strong band of CO_2 , This greatly reduces the air mass dependence of the retrievals.
- Switching from NCEP reanalysis data to GMAO Merra2, with increased spatial and temporal resolution
- Improved phase description in the Fourier transform
- Adding *NEW* research products
 - Mid-IR products
 - Retrievals on different CO₂ bands

Going Forward

Use the heterogeneity of the vertical abundance of NO₂ with the difference in

spectral signal, caused by pressure broadening, to independently retrieve boundary layer NO₂.

- Want to understand the C_2H_6 / CH_4 ratios to better constrain CH_4 emissions from natural gas sources.
- Compare all near- and mid-IR products with other remote sensing methods.

TCCON data can be found at: https://tccondata.org/