An Overview of GMD's Water Vapor Research

Dale Hurst, Emrys Hall, Allen Jordan CIRES, University of Colorado & Global Monitoring Division, NOAA ESRL

Thanks to: NASA UACO program NOAA CPO

<u>Scientific Goal</u>

Monitor and understand the inter-annual and longer-term variability of water vapor in the upper troposphere and stratosphere

Why?

Water vapor is a very powerful greenhouse gas, especially in the very cold region near the tropopause

SWV influences stratospheric O_3 - polar (PSCs) and global (H O_x)

How?

Balloon-borne NOAA Frost Point Hygrometers (FPHs)

<u>Where?</u>

Boulder, Colorado; Hilo, Hawaii; Lauder, New Zealand

<u>When?</u>

1-2 soundings per month at each site

Water Vapor in the Stratosphere

How does it get there?

- Slow vertical transport (Brewer-Dobson Circulation)
- Fast cross-tropopause transport (Deep Convective Ice Lofting)
- Isentropic transport through tropopause breaks
- In situ oxidation of CH_4 and H_2 in the stratosphere

How is it removed?

- Recirculation (Brewer-Dobson Circulation)
- Photo-dissociation by Lyman- α radiation (Mesosphere)
- Dehydration within Antarctic vortex during winter/spring

What controls its distribution?

- Strengths and Phases of BDC, QBO, ENSO (Seasonal, Inter-annual)
 -> influences on tropical coldpoint (minimum) temperatures
- Amounts of CH_4 and H_2 that have been oxidized (Height-dependent)
- Strengths of deep convection, Antarctic dehydration, Asian monsoon

Water Vapor-Climate Feedback

Tropospheric Water Vapor (>99.9% of atmospheric burden)

- Strong IR absorber of outgoing long-wave radiation (OLR)
- Increased surface and tropospheric temperatures adds WV
 Additional WV absorbs more OLR

Stratospheric Water Vapor (<0.1% of atmospheric burden)

- Strong IR absorber of OLR, weak thermal emission to space
- Climate change to warm the tropical tropopause and increase SWV
 Additional SWV absorbs more OLR

Changes in SWV have a significant impact on surface temperatures

The ~1 ppm (~25%) increase in SWV between 1980 and 2000 would have enhanced the rate of surface warming in the 1990s by ~30%

Solomon et al. (2010)

How GMD Measures Water Vapor

Balloon-Borne Frost Point Hygrometers (FPH)

- 1854: First dew point hygrometer developed in Germany
- 1947: First FPH capable of measuring SWV (<10 ppm)
- 1960-70s: Mastenbrook and Oltmans developed balloon-borne FPH at NRL
- 1980: Oltmans begins routine FPH soundings in Boulder
- 1989->: FPH performance improved: digital logic, stable frost control
- Every NOAA FPH is built and bench-tested at GMD. 40-50 per year

Where GMD Measures Water Vapor

Boulder • Hilo • San José	• Sodankyl Lindenberg		Lauder
NOAA FPH sites	Boulder	40°N	since 1980 3
(~monthly profiles)	Hilo	20°N	since 2010
	Lauder	45°S	since 2004
Other sites (using CFH)	Sodankylä	67°N	since 2002
(with >5 years of monthly profiles)	Lindenberg	; 52°N	since 2008
	San José	10°N	since 2005

Water Vapor Vertical Profiles

FPH Measurement Accuracy and Uncertainties

10

MC-APicT-1.4 water vapor mixing ratio [ppmv]

from Hall et al. (2016)

Scientific Findings

updated from Hurst et al. (2011)

Trends of 0.20 – 0.25 ppm decade⁻¹

FPH and CFH vs MLS, 68 hPa

GMAC and GMD Review May 23, 2018

10/12

FPs vs MLS: Post-2010 Drifts

Full-Record Biases

GMAC and GMD Review May 23, 2018

11/12

Summary

WV near the tropopause is a powerful GHG (+feedback)

GMD: 1-2 FPH launches/month at 3 sites. 38 years at BLD

Only 6 FP sites world-wide with records >5 years

Boulder record: SWV increase of ~20% since 1980

Measurement uncertainties <6% (2σ) in the stratosphere

FPs and MLS began diverging ~2010 (1-2% yr⁻¹)

FPs-MLS biases up to 0.4 ppm (10%) below 23 km

Photo by Patrick Cullis, GMD

Extra Slides

Ensuring Long-Term FPH Measurement Accuracy Calibration of mirror thermistors

Calibration Range: -100 to $+20^{\circ}$ C (takes ~36 hours)

FP vs Satellite Drifts FPH - MLS

