

Unexpected and significant biospheric CO₂ fluxes in the Los Angeles Basin revealed by atmospheric radiocarbon (¹⁴CO₂)

John Miller^{1,2} Scott Lehman³, Kristal Verhulst⁴, Charles Miller⁴, Riley Duren⁴, Sally Newman⁵, Jack Higgs¹, ... Christopher Sloop⁶, Pat Lang¹, Eric Moglia^{1,2}

NOAA/GMD 2: EU/CIRES 3. CU/INSTAAR 4. NASA/JPL 5. CalTech 6. Earth Networks

LA Megacities goals and our hypotheses

"Develop and demonstrate measurement systems capable of quantifying trends in the anthropogenic carbon emissions of the Los Angeles Megacity (target: 10% change in Fossil Fuel CO_2 over 5 years)."

- Despite a large network of CO₂ observations, quantifying CO₂ variations difficult without understanding biogenic contributions.
- 2. Biogenic contributions difficult without ¹⁴C.

LA Basin ¹⁴CO₂ sampling sites

What you need to know about radiocarbon (¹⁴C)

- Produced via cosmic rays; absorbed by photosynthesis; decay with a half-life of ~6000 yrs.
- 2. Thus, fossil fuels have no ¹⁴C; but ¹⁴C_{bio} ~ ¹⁴C_{atmos}.
- 3. CO₂ variations can be split into bio and fossil using ¹⁴C.
- 4. Precious: $[{}^{14}CO_2] \sim 400 \times 10^{-18}$; measured by Accelerator MS on 2 liters of air.
- 5. ¹⁴C/C expressed as $\Delta = [(^{14}C/C)/R_{std} 1]1000$ in "per mil"

Measurements of local and background CO $_2$ and $\Delta^{14}\rm C$ allow us to determine C $_{\rm fos}$ and C $_{\rm bio}.$

CO₂ and ¹⁴CO₂ data show large variations with a clear fossil fuel contribution.

Biospheric contribution to total CO_2 is substantial.

- → Larger enhancements in winter – less vertical mixing.
- → Seasonally varying biosphere contribution with summer uptake.
- → Summer biosphere drawdown is likely underrepresented because of enhanced mixing.
- → Variability in CO₂xs,bio and fos are likely dominated by changes in mixing.

Biogenic contribution appears highly seasonal

Why is CO₂bio so high?

- 1. Ethanol in gasoline ~ 3% of fossil fuel emissions
- 2. Human respiration ~ 5%
- 3. Livestock respiration << 1%
- → Urban ecosystems: parks, lawns, golf courses, forests
- 5. Only urban ecosystems can explain negative C_{bio}

Use fossil fuel inventory to estimate bio flux

$$F_{bio} = C_{bio}/C_{fos} \times F_{fos}$$
Data Inventory (Vulcan)

- Allows separation of atmospheric mixing and emissions.
- Annual mean flux (NEE) ~ neutral (different than C_{bio}).
- Seasonal minimum is in summer, not spring, as expected for Mediterranean climate.
- This suggests managed ecosystems (e.g. lawns) are driving C_{bio}, not native grass and forest ecosystems.

Summary and implications

- 1. $CO_2xs \neq CO_2fos$, even in L.A.
- Remote-sensing and *in situ* approaches for urban CO₂ fluxes need to account for biospheric CO₂.
- CO₂bio varies throughout the year, and likely year to year. → Trend detection will be difficult.
- 4. Continued and widespread measurement of urban biosphere fluxes will be required to isolate the fossil fuel emissions signal.

Footprints

LANDSAT 30 m Vegetation (EVI)

LANDSAT 30 m EVI zoomed in shows even more.

 \rightarrow Google Earth (~50 cm) shows yet more.

Isotopic mixing analysis also shows substantial biospheric contribution throughout the year.

Pure fossil: -1000 per mil

Winter: -760 per mil \rightarrow CO₂xs is 24% biogenic Summer: -830 per mil \rightarrow CO₂xs is 17% biogenic

High correlation of Bio and Fossil components consistent with co-located distributed sources.

- Fossil fuels (and ethanol), and human population are similarly distributed throughout the Basin.
- Urban ecosystems may also be.
- High correlation also suggests urban ecosystems and not mountain forest areas are responsible for Cbio variations.
- N.B.: Correlation is analyzed in winter to avoid near zero CO₂bio signal resulting from net photosynthesis.

Nighttime signals show more biogenic signal and small signals overall.

Wintertime biospheric CO_2 fraction averages ~50% for regions; ~ 20% for cities

Thanks to: K. Rozanski, M. Zimnoch (Poland); I. Levin (Germany); Morgan Lopez(France); L. Zhou (China); Korea-China 19 Center for Atmos. Res.

Atmospheric ¹⁴CO₂ looks just like fossil CO₂

-2.5 per mil Δ^{14} C = 1 ppm CO₂-fossil

We can leverage our ¹⁴C measurements to create a pseudo-continuous CO₂fos time series.

a. COxs:CO₂ff ratios are fairly consistent (here for USC)

b. Applying these to the USC COxs time series allows us to create "CO₂fos Synthetic"

