Synthesis of Aerosol Physical, Chemical, and Radiative Properties from Various Sources: Consistency and Closure

Hagen Telg

Allison McComiskey Elisabeth Andrews Gary Hodges Don Collins Thomas Watson

May 23, 2018

introduction ●○○○	scattering coefficient	hemispheric backscattering fraction	hygroscopicity	conclusions 00000
introduction				
C				

- Closure study of aerosol properties: scattering coefficient (σ), hemispheric backscattering fraction (g), hygroscopicity (*fRH*)
- ⇒ assess the consistency and understand benefits and limitation of different techniques
- $\Rightarrow \sigma, g, fRH$ needed to understand aerosol radiative forcing
- data-products are from in-situ measurements at DOE ARM Southern Great Plains (SGP) site
- time frame: the year 2012

introduction ●000	scattering coefficient	hemispheric backscattering fraction	hygroscopicity OO	conclusions
introduction				

- Closure study of aerosol properties: scattering coefficient (σ), hemispheric backscattering fraction (g), hygroscopicity (fRH)
- ⇒ assess the consistency and understand benefits and limitation of different techniques
- $\Rightarrow \sigma, g, fRH$ needed to understand aerosol radiative forcing
- data-products are from in-situ measurements at DOE ARM Southern Great Plains (SGP) site
- time frame: the year 2012

introduction	scattering coefficient	hemispheric backscattering fraction	hygroscopicity	conclusions
•000	00	00	00	00000
introduction				

- Closure study of aerosol properties: scattering coefficient (σ), hemispheric backscattering fraction (g), hygroscopicity (fRH)
- $\Rightarrow\,$ assess the consistency and understand benefits and limitation of different techniques
- $\Rightarrow \sigma, g, fRH$ needed to understand aerosol radiative forcing
- data-products are from in-situ measurements at DOE ARM Southern Great Plains (SGP) site
- time frame: the year 2012

scattering coefficient – σ

- measures light that is scattered by aerosols \Rightarrow scattering coefficient
- 3 channels, red, green, blue \rightarrow only green (550 nm) considered here

hemispheric backscattering fraction – $g = \sigma_{\sf back}/\sigma_{\sf total}$

• backscattering is measured by blocking forward fraction

hygroscopicity – $f \mathbf{R} \mathbf{H} = \sigma_{wet} / \sigma_{dry}$

• two nephelometers in series \rightarrow 1st measures $\sigma_{\rm dry}$ (RH < 40%), second $\sigma_{\rm wet}$ (RH \lesssim 80%)

・ロト ・ 雪 ト ・ ヨ ト

scattering coefficient – σ

- measures light that is scattered by aerosols \Rightarrow scattering coefficient
- 3 channels, red, green, blue \rightarrow only green (550 nm) considered here

hemispheric backscattering fraction – $g = \sigma_{\text{back}}/\sigma_{\text{total}}$

· backscattering is measured by blocking forward fraction

hygroscopicity – $f \mathbf{R} \mathbf{H} = \sigma_{wet} / \sigma_{dry}$

• two nephelometers in series \rightarrow 1st measures $\sigma_{\rm dry}$ (RH < 40%), second $\sigma_{\rm wet}$ (RH \lesssim 80%)

・ロト ・ 戸 ト ・ 回 ト ・ 日 ト

scattering coefficient – σ

- measures light that is scattered by aerosols \Rightarrow scattering coefficient
- 3 channels, red, green, blue \rightarrow only green (550 nm) considered here

hemispheric backscattering fraction – $g = \sigma_{\text{back}}/\sigma_{\text{total}}$

· backscattering is measured by blocking forward fraction

hygroscopicity – $f \mathbf{R} \mathbf{H} = \sigma_{wet} / \sigma_{dry}$

• two nephelometers in series \rightarrow 1st measures $\sigma_{\rm dry}$ (RH < 40%), second $\sigma_{\rm wet}$ (RH \lesssim 80%)

・ ロ ト ・ 雪 ト ・ 目 ト ・

introduction	scattering coefficient	hemispheric backscattering fraction	hygroscopicity	conclusions
0000	00	00	00	00000

introduction - size distribution

size distributions

- particles with d < 750 nm ↔ scanning mobility particles sizer (SMPS)
- particles with d > 500 nm ↔ aerodynamic particle sizer (APS)

scattering coefficient – σ

- derived using Mie theory
- $\sigma(d, \lambda, n)$ with $\lambda = 550$ nm and n = 1.5

hemispheric backscattering frac. $g = \sigma_{\text{back}}/\sigma_{\text{total}}$

• Mie provides phase function
$$\mathcal{P}$$

 $\sigma_{back} = \sigma_{total} \cdot \int_{\pi/2}^{3\pi/2} \sin(\theta) \mathcal{P}(\theta) \cdot d\theta$

hygroscopicity – fRH $= \sigma_{ m wet}/\sigma_{ m dry}$

- tandem differential mobility analyzer (TDMA)
- 1st runs under dry (RH = 20%) second under wet (RH = 90%) conditions

・ロト ・ 雪 ト ・ ヨ ト

⇒ fRH from dry and wet size distribution using Mie

introduction	scattering coefficient	hemispheric backscattering fraction	hygroscopicity	conclusions
0000	00	00	00	00000

introduction - size distribution

size distributions

- particles with d < 750 nm ↔ scanning mobility particles sizer (SMPS)
- particles with d > 500 nm ↔ aerodynamic particle sizer (APS)

scattering coefficient – σ

- derived using Mie theory
- σ(d, λ, n) with λ = 550 nm and n = 1.5

hemispheric backscattering frac. $g = \sigma_{\text{back}}/\sigma_{\text{total}}$

• Mie provides phase function
$$\mathcal{P}$$

 $\sigma_{back} = \sigma_{total} \cdot \int_{\pi/2}^{3\pi/2} \sin(\theta) \mathcal{P}(\theta) \cdot d\theta$

hygroscopicity – fRH $=\sigma_{ m wet}/\sigma_{ m dry}$

- tandem differential mobility analyzer (TDMA)
- 1st runs under dry (RH = 20%) second under wet (RH = 90%) conditions

・ロト ・得ト ・ヨト ・ヨト

CIR

⇒ fRH from dry and wet size distribution using Mie

introduction	scattering coefficient	hemispheric backscattering fraction	hygroscopicity	conclusions
0000	00	00	00	00000
introduction	n – size distributio	n		

size distributions

- particles with $d < 750 \text{ nm} \leftrightarrow$ scanning mobility particles sizer (SMPS)
- particles with $d > 500 \text{ nm} \leftrightarrow \text{aerodynamic particle sizer}$ (APS)

scattering coefficient – σ

- derived using Mie theory
- $\sigma(d, \lambda, n)$ with $\lambda = 550$ nm and n = 1.5

hemispheric backscattering frac. $g = \sigma_{\text{back}} / \sigma_{\text{total}}$

• Mie provides phase function
$$\mathcal{P}$$

 $\sigma_{back} = \sigma_{total} \cdot \int_{\pi/2}^{3\pi/2} \sin(\theta) \mathcal{P}(\theta) \cdot d\theta$

- tandem differential mobility analyzer (TDMA)
- 1st runs under dry (RH = 20%) second under wet

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

CIR

э

introduction scattering coe 0000 00	fficient hemispheric backscattering fraction OO	hygroscopicity conclusions
introduction - size dis	stribution	
Size/scattering distribution	size distributions particles with d sizer (SMPS) particles with d particles with d (APS) scattering coefficient derived using Mit $\sigma(d, \lambda, n)$ with λ	
Particle diameter (n Particle diameter (nm) - 550 - 1100 - 100 - 00 - 0	hemispheric backs • Mie provides pha $\sigma_{back} = \sigma_{total}$ hygroscopicity – fl • tandem differenti • 1st runs under di (RH = 90%) corr	$\int_{\pi/2}^{3\pi/2} \sin(\theta) \mathcal{P}(\theta) \cdot d\theta$ $\mathbf{RH} = \sigma_{\mathbf{wet}} / \sigma_{\mathbf{dry}}$ ial mobility analyzer (TDMA) ry (<i>RH</i> = 20%) second under wet

(ロ)

introduction	scattering coefficient	hemispheric backscattering fraction	hygroscopicity	conclusions
000●	00	00	00	00000
introductio	n – chemical com	position		

chemical composition

- Aerosol Chemical Speciation Monitor (ACSM)
- $\rightarrow~$ mass of NO_3, SO_4, NH_4, CI and Organic fraction

hygroscopicity – $f \mathbf{R} \mathbf{H} = \sigma_{wet} / \sigma_{dry}$

- \Rightarrow growth factor gRH
- ⇒ fRH from dry and grown size distribution using Mie

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

the first of the set of the set	also such as the success of	tat a la		
000●	00	00	00	00000
introduction	scattering coefficient	hemispheric backscattering fraction	hygroscopicity	conclusions

introduction - chemical composition

chemical composition

- Aerosol Chemical Speciation Monitor (ACSM)
- $\rightarrow~$ mass of NO_3, SO_4, NH_4, CI and Organic fraction

hygroscopicity – $f \mathbf{R} \mathbf{H} = \sigma_{wet} / \sigma_{dry}$

- \Rightarrow growth factor gRH
- ⇒ fRH from dry and grown size distribution using Mie

introduction	scattering coefficient	hemispheric backscattering fraction	hygroscopicity	conclus
0000	0•	00	00	0000

scattering coefficient - closure

correlation

- high correlation and linear relationship
- σ (nephelometer) > σ (size distribution)

uncertainty (85% confidence)

nephelometer $\pm 10\% \Leftarrow$ truncation, particle loss

size distribution \pm 42 %

introduction	scattering coefficient	hemispheric backscattering fraction	hygroscopicity	conclusion
0000	0•	00	00	00000

scattering coefficient - closure

correlation

- high correlation and linear relationship
- σ (nephelometer) > σ (size distribution)

uncertainty (85% confidence)

nephelometer $\pm 10\% \Leftarrow$ truncation, particle loss

size distribution $\,\pm$ 42 %

introduction	scattering coefficient	hemispheric backscattering fraction	hygroscopicity
0000	00	00	00

conclusions 00000

scattering coefficient - closure

correlation

- · high correlation and linear relationship
- σ(nephelometer) > σ(size distribution)

uncertainty (85% confidence)

nephelometer $\pm 10\% \Leftarrow$ truncation, particle loss

size distribution \pm 42 %

- 44% combined uncertainty
- the 1:1- line is within the 95% confidence interval

to improve bias better knowledge of sub-micron particle shapes and the counting efficiency of the SMPS is needed

hemispheric backscattering fraction - closure

- moderate correlation and large bias
- uncertainty (20%) can not fully explain bias
- correlation improves when data with weak scattering signal is removed max r when σ > 20 Mm⁻¹

・ロト ・ 同ト ・ ヨト ・ ヨト

 \rightarrow more then 50% of data excluded

hemispheric backscattering fraction - closure

- · moderate correlation and large bias
- uncertainty (20%) can not fully explain bias
- correlation improves when data with weak scattering signal is removed max r when σ > 20 Mm⁻¹
- \rightarrow more then 50% of data excluded

hemispheric backscattering fraction - closure

- moderate correlation and large bias
- uncertainty (20%) can not fully explain bias
- correlation improves when data with weak scattering signal is removed max r when σ > 20 Mm⁻¹
- \rightarrow more then 50% of data excluded

introduction	scattering coefficient	hemispheric backscattering fraction	hygroscopicity	conclusions
0000	00	00	0•	00000

hygroscopicity - closure

• weak correlation and strongly biased

 correlation improves if data is limited to RH_{dry} < 20%

⇒ is RH < 40% ≡ dry good assumption?!?</p>

introduction	scattering coefficient	hemispheric backscattering fraction	hygroscopicity	conclusions
0000	00	00	0●	00000

hygroscopicity - closure

- weak correlation and strongly biased
- correlation improves if data is limited to RH_{dry} < 20%

・ロト ・ 一下・ ・ ヨト ・ ヨ

 \Rightarrow is $RH < 40\% \equiv dry \text{ good}$ assumption?!?

introduction 0000	scattering coefficient	hemispheric backscattering fraction	hygroscopicity OO	conclusions ●OOOO
conclusions	5			

closure of scattering coefficient

- nephelometer and size distribution products are highly correlated but show significant bias
- large uncertainties likely origin of bias, in particular related to particle shape and counting efficiency of SMPS

closure of hemispheric backscattering fraction

- nephelometer and size distribution products are moderately correlated and show significant bias
- correlation is improved when data is removed where scattering is low

・ロト ・ 何 ト ・ ヨ ト ・ ヨ

closure of hygroscopicity

- correlation of nephelometer and size distribution products are low to moderate and show very large bias
- correlation and bias greatly improve if "dry" is defined as RH < 20%

introduction 0000	scattering coefficient	hemispheric backscattering fraction	hygroscopicity OO	conclusions ●OOOO
conclusions	5			

closure of scattering coefficient

- nephelometer and size distribution products are highly correlated but show significant bias
- large uncertainties likely origin of bias, in particular related to particle shape and counting efficiency of SMPS

closure of hemispheric backscattering fraction

- nephelometer and size distribution products are moderately correlated and show significant bias
- correlation is improved when data is removed where scattering is low

イロト イポト イヨト イヨト

closure of hygroscopicity

- correlation of nephelometer and size distribution products are low to moderate and show very large bias
- correlation and bias greatly improve if "dry" is defined as RH < 20%

introduction 0000	scattering coefficient	hemispheric backscattering fraction	hygroscopicity OO	conclusions ●OOOO
conclusions				

closure of scattering coefficient

- nephelometer and size distribution products are highly correlated but show significant bias
- large uncertainties likely origin of bias, in particular related to particle shape and counting efficiency of SMPS

closure of hemispheric backscattering fraction

- nephelometer and size distribution products are moderately correlated and show significant bias
- correlation is improved when data is removed where scattering is low

closure of hygroscopicity

- correlation of nephelometer and size distribution products are low to moderate and show very large bias
- correlation and bias greatly improve if "dry" is defined as ${\it RH} < 20\%$

0000	oo	OO	oo	Conclusions O●OOO
acknowled	dgment			
	CIRES	 Allison McCon Elisabeth And Gary Hodges 		

NATIONAL LABORATORY

EN

BROOKH&V

Don Collins

Thomas Watson

conclusions

introduction	scattering coefficient
0000	00

hemispheric backscattering fraction

hygroscopicit

< □ > < □ > < □ > < □ > < □ > < □ >

conclusions

scattering distribution

hu was a a a a t	a tanan shadaya aha a at a a			
0000	00	00	00	00000
introduction	scattering coefficient	hemispheric backscattering fraction	hygroscopicity	conclusions

hygroscopicity - introduction

$$f \mathsf{RH}(\kappa) = \frac{1 + \kappa \frac{RH_{\mathsf{wet}}}{100 - RH_{\mathsf{wet}}}}{1 + \kappa \frac{RH_{\mathsf{dry}}}{100 - RH_{\mathsf{dry}}}}$$

nephelometer

two nephelometers in series \to 1st measures $\sigma_{\rm dry}$ (RH $<\,$ 40%), second $\sigma_{\rm wet}$ (RH \lessapprox 80%)

size distribution

- two SMPS in series *bka* tandem differential mobility analyzer (TDMA)
- 1st runs under dry (RH = 20%) second under wet (RH = 90%) conditions
- $\Rightarrow\,$ growth distribution $\Rightarrow\,$ *fRH* from dry and wet size distribution using Mie

chemical composition

• Aerosol Chemical Speciation Monitor (ACSM) \rightarrow mass of NO_3, SO_4, NH_4, Cl and Organic fraction

- \Rightarrow growth factor gRH
- \Rightarrow fRH from dry and grown size distribution using Mie

0000	00	00	00	00000
introduction	scattering coefficient	hemispheric backscattering fraction	hygroscopicity	conclusions

hygroscopicity - introduction

nephelometer

two nephelometers in series \rightarrow 1st measures $\sigma_{\rm dry}$ (RH $<\,$ 40%), second $\sigma_{\rm wet}$ (RH \lessapprox 80%)

size distribution

- two SMPS in series bka tandem differential mobility analyzer (TDMA)
- 1st runs under dry (RH = 20%) second under wet (RH = 90%) conditions
- $\Rightarrow~{\rm growth~distribution} \Rightarrow {\it fRH}$ from dry and wet size distribution using Mie

chemical composition

• Aerosol Chemical Speciation Monitor (ACSM) \rightarrow mass of NO_3, SO_4, NH_4, Cl and Organic fraction

・ロト ・ 雪 ト ・ ヨ ト

- \Rightarrow growth factor gRH
- \Rightarrow fRH from dry and grown size distribution using Mie

introduction	
0000	

scattering coefficient

hemispheric backscattering fraction

hygroscopicit

conclusions

hygroscopicity - introduction

nephelometer

two nephelometers in series \rightarrow 1st measures $\sigma_{\rm dry}$ (RH < 40%), second $\sigma_{\rm wet}$ (RH \lessapprox 80%)

size distribution

- two SMPS in series bka tandem differential mobility analyzer (TDMA)
- 1st runs under dry (RH = 20%) second under wet (RH = 90%) conditions
- $\Rightarrow~{\rm growth~distribution} \Rightarrow {\it fRH}$ from dry and wet size distribution using Mie

chemical composition

- Aerosol Chemical Speciation Monitor (ACSM) \rightarrow mass of NO_3, SO_4, NH_4, Cl and Organic fraction

イロト イポト イヨト

- ⇒ growth factor gRH
- ⇒ fRH from dry and grown size distribution using Mie

