The OCO-2 Model Intercomparison Project Reveals Systematic Transport Model Effects on Inverse Model CO₂ Fluxes

Andrew R. Jacobson^{1,2}, Andrew Schuh³, Sourish Basu^{1,2}, Brad Weir⁴, David F. Baker³, Kevin Bowman⁵, Frédéric Chevallier⁶, Sean Crowell⁷, Ken Davis⁸, Feng Deng⁹, Scott Denning³, Liang Feng¹⁰, Dylan B. Jones⁹, Junjie Liu⁵, Paul Palmer¹⁰

- 1. University of Colorado, Boulder, Colorado
- 2. NOAA Earth System Research Laboratory, Boulder, Colorado
- 3. Colorado State University, Fort Collins, Colorado
- 4. NASA Global Modeling and Assimilation Office, Greenbelt, Maryland
- 5. NASA Jet Propulsion Laboratory, Pasadena, California
- 6. Laboratoire des Sciences du Climat et de l'Environnement, Gif-sur-Yvette, France
- 7. University of Oklahoma, Norman, Oklahoma
- 8. The Pennsylvania State University, State College, Pennsylvania
- 9. University of Toronto, Toronto, Canada
- 10. University of Edinburgh, Edinburgh, Scotland

Sulfur Hexafluoride

Long-term mean model residuals at surface SF₆ sites.

TM5 performance circa 2012 (gold) showed sluggish interhemispheric transport.

Model minus observed SF₆, 2000–2008 mean by site

Sulfur Hexafluoride

Long-term mean model residuals at surface SF₆ sites.

TM5 performance circa 2012 (gold) showed sluggish interhemispheric transport.

CT2013B used fixed convection in TM5 (red) resulting in a ~600 TgC/yr reduction in estimated land sink in northern midlatitudes.

Model minus observed SF₆, 2000-2008 mean by site

Model minus observed SF₆, 2000-2008 mean by site

Sulfur Hexafluoride

Long-term mean model residuals at surface SF₆ sites.

TM5 performance circa 2012 (gold) showed sluggish interhemispheric transport.

CT2013B used fixed convection in TM5 (red) resulting in a ~600 TgC/yr reduction in estimated land sink in northern midlatitudes.

GEOS-Chem (blue) has surface excess north of about 30°N.

CT2016 CO₂ tracers

Zonal-mean xCO₂, so varies in latitude and time.

Portrayed is the difference (GEOS-Chem minus TM5)

GEOS-Chem appears to transport signals out of the northern midlatitudes more quickly than does TM5.

BIOSPHERE + OCEAN + FIRES

FOSSIL

Experiment	Data Assimilated
IS	Traditional in situ CO ₂ measurements
LN	OCO-2 xCO ₂ retrievals – land nadir mode
LG	OCO-2 xCO ₂ retrievals – land glint mode
OG	OCO-2 xCO ₂ retrievals – ocean glint mode
LNi	Traditional <i>in situ</i> CO ₂ measurements and OCO-2 xCO ₂ retrievals – land nadir mode

Experiments from Sept 2014 to near present

V7 of OCO-2 retrievals, using empirical bias correction (including S31 albedo fix)

- 1. CT-NRT (Jacobson)
- 2. OU (Crowell)
- 3. U Edinburgh (Feng, Palmer)
- 4. CSU (Schuh)
- 5. CMS-Flux (Liu, Bowman)
- 6. TM5-4DVAR (Basu)
- 7. CAMS (Chevallier)
- 8. UT (Deng, Jones)
- 9. G5APR (Weir)
- 10.CSU-Baker

Experiment	Data Assimilated
IS	Traditional in situ CO ₂ measurements
LN	OCO-2 xCO ₂ retrievals – land nadir mode
LG	OCO-2 xCO ₂ retrievals – land glint mode
OG	OCO-2 xCO ₂ retrievals – ocean glint mode
LNi	Traditional <i>in situ</i> CO_2 measurements and $OCO-2 \times CO_2$ retrievals – land nadir mode

Experiments from Sept 2014 to near present

V7 of OCO-2 retrievals, using empirical bias correction (including S31 albedo fix)

- 1. CT-NRT (Jacobson)
- 2. OU (Crowell)
- 3. U Edinburgh (Feng, Palmer)
- 4. CSU (Schuh)
- 5. CMS-Flux (Liu, Bowman)
- 6. TM5-4DVAR (Basu)
- 7. CAMS (Chevallier)
- 8. UT (Deng, Jones)
- 9. G5APR (Weir)
- 10.CSU-Baker

Experiment	Data Assimilated
IS	Traditional in situ CO ₂ ricasurements
LN	OCO-2 xCO ₂ retrievals – land nadir mode
LG	OCO-2 xCO ₂ retrievals – land glint mode
OG	OCO-2 xCO ₂ retrievals – ocean glint mode
LNi	Traditional in situ CC OCO-2 xCO ₂ retrieve MERRA

Experiments from Sept 2014 to near present

V7 of OCO-2 retrievals, using empirical bias correction (including S31 albedo fix)

- 1. CT-NRT (Jacobson)
- 2. OU (Crowell)
- 3. U Edinburgh (Feng, Palmer)
- 4. CSU (Schuh)
- 5. CMS-Flux (Liu, Bowman)
- 6. TM5-4DVAR (Basu)
- 7. CAMS (Chevallier)
- 8. UT (Deng, Jones)
- 9. G5APR (Weir)
- 10.CSU-Baker

Experiment	Data Assimilated
IS	Traditional in situ CO ₂ measi
LN	OCO-2 xCO ₂ retrievals – land nadir mode
LG	OCO-2 xCO ₂ retrievals – lar other
OG	OCO-2 xCO ₂ retrievals – octan girit mode
LNi	Traditional <i>in situ</i> CO, measurements and OCO-2 xCO ₂ retrieva variational

Experiments from Sept 2014 to near present

V7 of OCO-2 retrievals, using empirical bias correction (including S31 albedo fix)

- 1. CT-NRT (Jacobson)
- 2. OU (Crowell)
- 3. U Edinburgh (Feng, Palmer)
- 4. CSU (Schuh)
- 5. CMS-Flux (Liu, Bowman)
- → 6. TM5-4DVAR (Basu)
 - 7. CAMS (Chevallier)
 - 8. UT (Deng, Jones)
 - 9. G5APR (Weir)
 - 10.CSU-Baker

OCO-2 MIP flux results - seasonality

Annual cycle amplitude

0-45°N: GEOS-Chem (blue) has greater seasonality, TM5 (red) lesser.

45°N-90°N: GEOS-Chem (blue) has lesser seasonality, TM5 (red) greater.

More diversity in GEOS-Chem results than in TM5.

Scatter precludes statistical significance.

Consistent with GEOS-Chem more actively sweeping signals out of mid-latitudes.

OCO-2 MIP flux results – long-term mean

Optimized flux – 2-year mean

0-45°N: GEOS-Chem (blue) has smaller sink, TM5 (red) greater.

45°N-90°N: GEOS-Chem (blue) has greater sink, TM5 (red) smaller.

Evidence is anecdotal more than statistical. Thankfully, it is backed up by a mechanistic interpretation.

Despite increased seasonality in low latitudes, GEOS-Chem sink is smaller...because of the fossil fuel signal.

Conclusions

- Large-scale transport differences between GEOS-Chem and TM5 are revealed by forward simulations of SF₆ and CO₂.
- Mechanism requires that GEOS-Chem ventilate mid-latitudes more quickly than TM5, so enhanced meridional transport...but also trapping closer to surface.
- An collection of inversions from the OCO-2 MIP appears to show optimized flux artifacts consistent with those transport differences.
- Next step: Reynolds decomposition of the zonal-mean meridional CO₂ flux. Contributions from mean flow, stationary eddies, transient eddies.