# PICARRO

### Quantification of formaldehyde by near-infrared cavity ring-down spectroscopy

D. Kim-Hak Chris W. Rella , J. A. Hoffnagle

Picarro, Inc., Santa Clara, CA



#### Why Measure Formaldehyde in the Atmosphere?



- HCHO is an important ozone precursor
  - It is an intermediate species in the photochemical oxidation of airborne VOCs (Volatile Organic Compounds)

 HCHO is involved in, and emitted from a variety of materials (composite wood product, carpets) and industrial processes

- HCHO is a respiratory irritant and a known carcinogen
  - NIOSH (National Institute for Occupational Safety and Health) Recommended Exposure Limit (REL) = 16 ppb



#### **HCHO** in the Troposphere



- HCHO in the troposphere is the result of direct anthropogenic emissions and indirect formation from VOC oxidation (photochemically driven)
- HCHO is scavenged from the atmospheric via similar oxidation pathways
- Lifetime of formaldehyde in the troposphere is typically on the scale of hours
- In-situ formaldehyde observations inform photochemical models, improving understanding of ozone and secondary organic aerosol formation

http://mcm.leeds.ac.uk/MCM/project.htt

### Alternative Methods for Formaldehyde Detection (at ppb levels)

- DNPH cartridges + High Performance Liquid Chromatography
  - Sensitive, selective, well-benchmarked and tested, measures other aldehydes and ketones
  - Not real time, requires off-line analysis
- closed cell FTIR
  - Selective, measures other species
  - Not sufficiently sensitive without preconcentration (~ 10s ppb in 5 minutes)
- Laser Induced Fluorescence
  - very sensitive and selective, real time
  - Requires UV source, no commercially available options
- Tunable Laser Absorption Spectroscopy with a multi-pass cell
  - selective, marginal sensitivity
  - requires mid-infrared laser source

- DOAS (Differential Optical Absorption Spectroscopy)
  - Selective, complementary to point-source in-situ data, useful for column measurements or path integrals
  - difficult to calibrate, only available during clear sky daylight hours, not easy to deploy indoors
- Gas Chromatography
  - sensitive and selective, measures many other species
  - not real time, requires preconcentration and more advanced detectors for sub-ppb precision
- PTR-MS (Proton Transfer Reaction Mass Spectrometry)
  - sensitive and selective, measures many other species
  - complicated, difficult to field deploy

#### **HCHO** measurements in the near-infrared

- Sensitive:  $(1-\sigma)$  precision 1 ppb in 1 sec, 0.1 ppb in 100 sec
- **Real-time:** responds in seconds to ppb-level changes in HCHO
- Accurate: only simple and infrequent calibration required
- **Selective:** measures HCHO accurately in the presence of other atmospheric species (H<sub>2</sub>O, CO<sub>2</sub>, CH<sub>4</sub>, and other aldehydes and VOCs)
- In-situ: no sample prep or laboratory consumables; robust, easy to use; field deployable with no user intervention
- Other Measurements:  $CH_4$  and  $H_2O$



#### **Picarro's Cavity Ring Down Spectrometer**



Time-based measurement means very high precision and accuracy

#### Near Infrared Spectrum of HCHO, CH<sub>4</sub>, and H<sub>2</sub>O



### Allan Standard Deviation: Characterizing Precision and Drift at zero



#### **CRDS – Calibration and Linearity**

- Initial calibration from literature (Saha et al. and Barry et al.)
- Calibration confirmed against a bottle of ~600 ppb HCHO in N<sub>2</sub>
  - bottle value assigned via UV cross-section (Hanisco and Wolfe)
- Testing against wellcharacterized Laser-Induced Fluorescence (LIF) instrument shows excellent linearity



[1] Saha et al., *Molecular Physics* **107**, 797-805 (2007)

[2] Barry et al., Phys. Chem. Chem. Phys. 4, 445 (2002).

[3] Wolfe, G and Hanisco, T., NASA GSFC, personal communication (2018).

#### **Ambient Measurements of HCHO**

• Species Measured:

-CO

 $-CO_2$ 

- H<sub>2</sub>CO - H<sub>2</sub>O - CH<sub>4</sub> **G2307 Analyzer** 
  - G1302: CO<sub>2</sub> and CO analyzer
- Measurements for about 200 days (and counting) at the Picarro 8 m "Urban Tower" (a.k.a., the flagpole outside our office)
- Gas stream not dried
- Transfer lines not heated
- Single bottle reference check for 10 minutes twice / day (02:00 and 14:00)

Picarro Urban Tower



#### **Ambient HCHO Time Series (7 months)**



- A: Partial Eclipse
- B: Heat wave / 'Spare The Air' days
- C: Northern California Wildfires (100 150 km distant)
- D: Overcast / rainy (late fall)

(Data gap due to water intrusion in outdoor sampling line)

#### **Comparison to Pandora Spectrometer @ UC Berkeley**

 Pandora: total column measurement of HCHO, NO2, ozone and other species using UV-VIS solar spectroscopy



PANDORA data courtesy of :

Mueller, M and Tiefengraber, M., Luftblick Earth Observation Technologies, Kreith, Austria.

Wooldridge, P. and Cohen, R., U.C. Berkeley



#### **Diurnal Cycle – Formaldehyde (7-month test)**



#### The 2017 American Eclipse on Aug 21<sup>st</sup>, 2017



### Can We See The Partial Eclipse in the Formaldehyde Signal?



## Thank you!

Thanks to E. Wahl, D. Fleck, T. Hanisco, L. Valin, G. Wolfe, M. Mueller, M. Tiefengraber, P. Wooldridge, L. Araci, J. Morerro, and R. Cohen

#### **CRDS – Calibration**

- Picarro Initial Calibration: literature values for our absorption line<sup>1,2</sup>
- Measurement of NASA-calibrated HCHO reference cylinder<sup>3</sup>
  - -Cylinder assigned Value: 580  $\pm$  15 ppb in balance N<sub>2</sub>
    - assigned by NASA group via UV-cross-section
  - -Picarro measurement : 575.5 ppb ± 5 ppb

(difference of 0.8%)

- after spectroscopic correction for N<sub>2</sub> vs air (+6.25%) was applied
- well within uncertainty on cylinder assignment

[1] Saha et al., Molecular Physics 107, 797-805 (2007)

[2] Barry et al., Phys. Chem. Chem. Phys. 4, 445 (2002).

<sup>[3]</sup> Wolfe, G and Hanisco, T., NASA GSFC, personal communication (2018).