

INTRODUCTION

Atmospheric CO₂ measurements typically rely on high-pressure gas standards for calibration. Calibration scales are traceable to primary standards developed using absolute methods, such as manometry or gravimetry. Both methods can be influenced by the adsorption of CO_2 to surfaces. We have recently identified a potential bias (~0.04%) in our manometric measurement related to adsorption of CO_2 into or through Viton o-rings.

Recent advances in our understanding of the behavior of CO₂ in aluminum cylinders, along with a new method of transferring aliquots of pure CO_2 to cylinders, has enabled us to prepare gravimetric CO₂ standards with relatively low uncertainty.

We used gravimetric standards to independently verify the WMO-GAW CO₂ calibration scale and aid our assessment of pending bias corrections.

MATERIALS and METHODS

High-purity CO₂

Component	Purity Fraction	Method
CO ₂ (source)	0.99994	
CO ₂ (aliquot) [*]	0.99997	
H ₂ O	0.00003	electrolytic
CH ₄	0.00002	laser spectroscopy
CO	0.00001	laser spectroscopy
N ₂ O	2·10 ⁻⁸	GC-ECD
ethyne	3·10 ⁻⁹	GC-GCMS
ethene	2·10 ⁻⁹	GC-GCMS
propane	2·10 ⁻⁹	GC-GCMS
other hydrocarbons	< 2·10 ⁻⁸	GC-GCMS
total non-condensible	0.00002	residual pressure

Well-characterized cylinders

Air was decanted at 300 cc/min from cylinders multiple times to determine how much CO₂ adsorbs to interior surfaces. The CO₂ mole fraction exiting the cylinder increases as the pressure drops. Comparing the area above the dashed line and below the Langmuir isotherm (blue) to the area below the Langmuir isotherm, we calculated the fraction of CO₂ adsorbed to cylinder walls (Schibig et al., 2018).

Cylinder	Ν	CO ₂ adsorbed to walls	std. dev.	
		%	%	
CB11873	5	0.0043%	0.0003%	
CB11941	4	0.0042%	0.0003%	
CB11906	5	0.0038%	0.0004%	
CB11976	5	0.0044%	0.0005%	
CB12009	5	0.0044%	0.0002%	

One-Step Preparation of Gravimetric CO₂-in-air Standards

¹Brad Hall, ^{1,2}Andrew Crotwell, ^{1,2}Benjamin Miller, ¹James W. Elkins

¹NOAA Earth System Research Laboratory, Global Monitoring Division (GMD), Boulder, CO 80305 ²Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO 80309

> By using well-characterized cylinders and introducing a mixture of liquid and gaseous CO₂, we can prepare gravimetric CO₂ standards with low uncertainties.

The gravimetric standards show good agreement with a proposed scale update that includes manometer bias correction. Independent lines of evidence indicate that the X2007 CO₂ scale is $\sim 0.04\%$ low.

A scale update is underway and will be applied to all GMD data back to approximately 1980. While the magnitude of the scale update is relatively small, it will be significant with respect to network compatibility within WMO-GAW.

Cryogenic collection and purification (aliquot).

About 1.5g CO₂ was first transferred into a 50-cc stainless steel tube (A) and cryogenically purified. Then the purified CO₂ was transferred to a 5-cc tube (B) and weighed on a balance with 0.01 mg readability. This allows us to determine the mass of the aliquot with a relative uncertainty of ~0.005%.

3

Transfer aliquot of CO_2 to partially-evacuated cylinder, and add 2500g CO_2 -free air.

5

Calculate the mole fraction of CO_2 in the cylinder, and make minor corrections:

- account for CO_2 in the dilution gas (0.01 ppm)
- account for CO_2 adsorbed to walls (~0.004%)

WHAT WE LEARNED

Cylinder	Prepared	unc.	Response	unc.	Best-fit	Residual
	ppm	ppm			ppm	ppm
CB11873	357.545	0.059	0.881915	0.000028	357.512	-0.033
CB11906	397.497	0.062	0.980465	0.000025	397.502	0.005
CB11941	405.337	0.073	1.000000	0.000025	405.429	0.092
CB11976	449.301	0.075	1.108007	0.000025	449.257	-0.044
CB12009	491.763	0.077	1.212741	0.000039	491.756	-0.007

RESULTS

Five gravimetric CO_2 standards show excellent agreement. The standard deviation of residuals from a linear fit was 0.05 ppm. The largest deviation was 0.09 ppm, and this cylinder may have been influenced by residual CO₂ remaining in stainless steel transfer lines following tests with pure CO_2 .

This method will be used to support the development of the WMO-GAW CO₂ scale, particularly for mixing ratios higher than 1000 ppm.

Hall, B. D., A. M. Crotwell, B. R. Miller, M. Schibig, and J. W. Elkins (2019), Gravimetrically prepared carbon dioxide standards in support of atmospheric research, Atmos. Meas. Tech., 12(1), 517-524.

Schibig, M. F., D. Kitzis, and P. P. Tans (2018), Experiments with CO2-in-air reference gases in highpressure aluminum cylinders, Atmos. Meas. Tech., 11(10), 5565-5586.

