Recent Increases in the Burden of Atmospheric CH₄: Implications for the Paris Agreement

> Ed Dlugokencky¹, Martin Manning², Euan G. Nisbet³, and Sylvia Englund Michel⁴

> > ¹NOAA Global Monitoring Division
> > ²Victoria University of Wellington
> > ³Royal Holloway University of London
> > ⁴University of Colorado at Boulder

Potential Causes of Increased CH₄: Changes in [OH]?

- Two 2-box-model studies:
 - Rigby et al. 2017; Turner et al., 2017
- Using MC as proxy, both suggest decreasing trend in [OH]
- Both agree data are consistent with no trend in [OH]
- Detailed spatial and temporal information not used
- Neither suggests a mechanism for Δ [OH]
- Not consistent with 3-D CTM calculations of [OH] (nor ¹⁴CO constraint for SH extra-tropics)
- Δ [OH] can not explain $\delta^{13}C(CH_4)$
- Suggest $\delta^{13}CH_4$ provides only a weak constraint

Potential Causes of Increased CH₄: Changes in OH?

- Not consistent with 3-D CTMs (e.g., Nicely et al., JGR, 2018)
- Δ[OH] = -0.08±0.19%/decade (1985-2015)
 - Decreased [OH] from increased [CH₄] compensated by:
 - Changes in $\uparrow H_2O$, $\uparrow [NO_x]$, \downarrow column O_3 , tropical expansion, $\uparrow T$
- Biases in box model (e.g., Naus et al., ACP, 2019)
- Investigated systematic biases in transport and OH distribution in box models using 3-D CTM:
 - Accounting for biases reverses trend in [OH], making it positive:
 - Interhemispheric exchange rate
 - N/S asymmetry in [OH] (and "species-dependent" globally-averaged OH)
 - Stratospheric loss
 - Network bias in IHD (as in Pandey et al., 2019)

Is δ¹³CH₄ a weak constraint? *Although wide range of values observed, emission-weighted mean well-defined.

Larger uncertainty may be with Cl *Small impact on atmospheric XCH₄ *k¹²C/k¹³C ~ 1.066

What does δ^{13} C tell us?

• Schaefer et al., Nature, 2016

- Increased microbial emissions outside Arctic
- More likely agricultural sources than wetlands
- Nisbet et al., GBC, 2016; 2019
 - Increased microbial emissions in tropics
 - Wetlands and agricultural sources could contribute
 - Role for meteorology
 - Unlikely that changing lifetime contributed
- Thompson et al., GRL, 2018:
 - \uparrow microbial (36 ± 12) and FF (15 ± 8 CH₄ Tg yr⁻¹)
 - Offset by BB (-3 \pm 2) and soil sink (+5 \pm 6 Tg CH₄ yr⁻¹)
 - No change in atmospheric sink

Does CH₄ threaten target of warming below 1.5°C?

Recent global average CH₄ mixing ratio relative to three scenarios used in the last IPCC assessment report.

Observed changes in radiative forcing for CO_2 , CH_4 and N_2O relative to the RCP2.6 scenario.

Summary: Can we Explain the Observations?

- Understanding small changes to global budget is challenging
 - CH₄ budget is complex: many sources and sinks, all uncertain
 - Problem poorly constrained by observations
 - Increase over past decade likely caused by combination of multiple processes
- Should not ignore temporal and spatial information
 - Observed changes are abrupt and significant; points to role for wetlands
- Suspect that wetlands are involved and process models are not realistic
 - Fail to account properly for IAV in WL area and "memory effects"
- $\delta^{13}C(CH_4)$ observations are certainly useful and perhaps misunderstood
 - Need better understanding of big levers: Cl and biomass burning
 - $\delta D(CH_4)$ currently too few to be useful
- Recent increase in CH_4 burden hinders attainment of $\Delta T \le 1.5^{\circ}C$
 - Increases need for costly and difficult carbon capture

Extra Slides

Climate impacts of increasing CH₄:

- * RCP 2.6 could achieve 1.5°C target
- * Already deviating from this trajectory for CH₄
- * Without CH₄ reductions, need CO₂ removal
- * Ignores SW component of RF (+25%)
- * Policy: natural or anthropogenic processes?

(a) Sum k[CH₄][OH] (troposphere)

(b) Sum k[CH₄][CI] (troposphere)

Cl + CH₄ (Small contribution to total sink):

- Large influence on δ¹³C(CH₄) with (k(¹²C/¹³C)≈1.06 or 60‰ fractionation)
- Distribution: Hossaini et al., 2016

Sources of tropospheric CI:

- Oxidation of natural and anthropogenic halocarbons (CH₃Cl, CHCl₃....)
- Heterogeneous reactions involving sea salt

Annual mean column-integrated loss for CH₄ oxidation by OH and CI:

- CI + CH₄: 12-13 Tg CH₄ yr⁻¹ (2.5%)
- Contribution of Cl loss greatest at northern mid-latitudes
- Allan et al. (2007): 13-37 Tg CH₄ yr⁻¹
- Platt et al. (2004): up to 19 Tg CH₄ yr⁻¹

Hossaini et al., 2016

IPCC SR15: Simple Summary

Climate change is happening

- 1°C warming so far
- Increased extreme weather
- Rising sea level
- It is happening faster than we expected
 - Disappearing Arctic sea ice
- We are running out of time to limit its larger impacts
 - Zero CO₂ emissions by 2050!
 - Technological change must be guided by policy

ENSO Phase: Precipitation

Role of Cl (Not just important in the stratosphere...)

- Cl + CH₄: Small contribution to total sink despite larger k than for OH
 - Large influence on $\delta^{13}C(CH_4)$ (k($^{12}C/^{13}C$) \approx 1.06)
- Allan et al., 2001
 - Evidence of role of Cl in observed $\delta^{13}C(CH_4)$ at ~40°S

- Cl magnitude and distribution not well constrained
 - Allan et al., 2007: assumed photochemical from sea salt; guessed distribution
 - Hossaini et al., 2016: calculated magnitude and distribution with CTM

Variability in Atmospheric Methane From Fossil Fuel and Microbial Sources Over the Last Three Decades, **R. L. Thompson et al., GRL, 2018**

Optimized CH_4 , C_2H_6 , and $\delta^{13}C(CH_4)$; from 2006-14:

- * \uparrow microbial (36 ± 12) and FF (15 ± 8 CH₄ Tg yr⁻¹)
- * Offset by BB (-3 \pm 2) and soil sink (+5 \pm 6 Tg CH₄ yr⁻¹)
- * No change in atmospheric sink

Important details:

- * 2-D model (12-boxes, 4 x lat, 3 x vert)
- * Used only Allan Cl distribution
- * Used constant CH_4/C_2H_6 emission ratio

Nisbet et al., 2018, in review:

Emissions (black/gray):

- * Emissions increase by ~40 Tg CH₄ yr⁻¹ globally
- * Avg δ^{13} C of src gets lighter (30-90°N and 0-30°S) Sinks (green):
 - * Large Δsink (±5% x [OH]) to explain observations
 - * Difficult to reconcile with short-term variability

(b) Sum k[CH₄][Cl] (troposphere)

Sources of tropospheric Cl:

- Oxidation of natural and anthropogenic halocarbons (CH₃Cl, CHCl₃....)
- Heterogeneous reactions involving sea salt

Annual mean column-integrated loss for CH₄ oxidation by OH and Cl:

- $CI + CH_4$: 12-13 Tg CH_4 yr⁻¹ (2.5%)
- Contribution of Cl loss greatest at northern mid-latitudes
- Allan et al. (2007): 13-37 Tg CH₄ yr⁻¹
- Platt et al. (2004): up to 19 Tg CH₄ yr⁻¹

Hossaini et al., 2016

$\delta^{13}CH_4$ normalized to 2002:

*3-D CTM with [OH] reduced 8% and constant CH₄ emissions

*The influence of sink fractionation on atmospheric δ^{13} CH₄ is determined not only by [OH], but the weighted averages of OH, Cl, O(¹D), and soil sinks.

The δ^{13} C-CH₄ Constraint:

