Quantification of methane emissions and the role of satellites moving from global to local scales

S. Houweling^{1,2}, Ilse Aben², P. Sadavarte², J. C. A. van Peet¹, A. Segers³, J. Landgraf², J. D. Maasakkers², I. R. van der Velde², I. Aben²

Vrije Universiteit Amsterdam, Department of Earth Sciences, The Netherlands
 SRON Netherlands Institute for Space Research, The Netherlands
 TNO, The Netherlands

Paris agreement & CH₄

- It is not only about CO₂!
- CH₄ has a pivotal role in the energy transition discussion
- Fossil CH₄ emission are highly uncertain

Need for atmospheric monitoring => UK and CH UNFCCC reporting

Global CH₄ emission monitoring

CAMS CH₄ inversion re-analysis (2000 – 2016) using surface network data

Local emission detection

- SCIAMACHY: Large sources, long-term averaging
- Airborne: Demonstration of the potential at higher resolution and measurement sensitivity

SCIAMACHY 2003-2009 xCH₄ enhancement (ppb) a) -125-120-115-110-105-100-95-90-85-80-75 b) -125-120-115-110-105-100-95-90-85-80-75 c) -125-120-115-110-105-100-95-90-85-80-75 Kort et al, GRL, 2014

Airborne Methane Mapper (MAMAP)

Krautwurst et al, AMT, 2017

S5p TROPOMI

- Grating spectrometer
- CH₄: 2.3 μ m (instead of 1.6 μ m)
- Swath: 2600km
- Ground pixel: 7x7km² (at nadir)
- Other gases: NO2, O3, SO2, ...
- Clouds (NASA Suomi NPP)

TROPOMI XCH4

XCH4 (2017/11-2017/12)

TCCON validation:

Bias: 1.5 ppb Station to station variability: 6 ppb Precision: 13 ppb

Data publicly available at: https://scihub.copernicus.eu

Local XCH4 enhancements: African wetlands

TROPOMI XCH4 (12 Nov – 30 Dec, 2017)

Sudd Fresh water marshes South Sudan

Oil & Gas production in the US

Permian basin Texas:

- Rapidly growing Oil & Gas production basin
- Interpretation complicated due to aerosol & surface albedo dependences

Synergies TROPOMI - GHGSat

- Pixel size: < 50x50m²
- Target scene: 12x12km²

Permian basin CH₄ leak detection

0
1 km

Background image: Sentinel-2 Band 2 (ESA) image taken on 2018-08-19 Timestamp: 2018-08-17 16:53:54 UTC

Emission quantification and the use of models

- Investigated using TROPOMI XCO:
- Biomass burning plumes and steel plants
- Plume shape (direction and intensity) strongly dependent on effective emission height

Ivar van der Velde (SRON)

WRF - surface CO emissions

WRF - 3000m CO emissions

Remaining issues / challenges

- Surface albedo dependence as f(AOD)
- Corrected in the operational data

Summary

- **TROPOMI:** important step forward in the monitoring of CH4 emissions
- Added value of satellites: local scale emissions globally
- Source attribution: on-ground, airborne, high resolution satellites
- Emission quantification: just started => needs support from on ground measurements