The potential for public-transit based atmospheric monitoring to advance air quality and atmospheric chemistry research and to engage urban stakeholders

Logan E. Mitchell Erik Crosman Ben Fasoli Alexander Jacques Daniel Mendoza Derek Mallia John Horel John Lin

NOAA GMAC, 2019 May 22, 2019, Boulder, CO

Contact: Logan.Mitchell@utah.edu

The Big Picture...

Simultaneous GHG & Air Quality Monitoring

Salt Lake City's GHG targets:

- 2. 80 X 2040: 80% Reduction in Community Greenhouse Gas Emissions by 2040, Compared to 2009 Baseline
 - Goal includes at least 50% reduction in community footprint by 2030
- What monitoring networks & strategies are needed to understand emissions, chemistry, transport & trend detection?
- How can we make research findings applicable to stakeholders & policy makers?
 - Progress towards emission reduction goals
 - Sector based emissions

Help me find	
	(

DEQ Home | News | Notices | Contacts | EZ Records Search | Interactive Map | Payment Portal |

Serious Area PM2.5 SIP Links Background Technical Analysis Control Strategies Public Participation PM and SIP

Particulate Matter

Links

Overview

 $\label{eq:DEQ} DEQ Home > Pollutants > Particulate Matter > PM_{2.5} > Serious Area PM_{2.5} State Implementation Plan Development > Control Strategies$

Control Strategies Serious Area PM_{2.5} State Implementation Plan (SIP) Development

Disclaimer

The Serious $PM_{2.5}$ SIP Development is very much an iterative process. The technical foundation of any SIP involves numerous emissions inventories, air quality modeling assumptions, potential emission controls, and ever-fluctuating design values recorded throughout the air monitoring network. The $PM_{2.5}$ Implementation Rule is very prescriptive about how these numbers must fit together to comprise an approvable plan. Various components are compiled early in the process only

Contents lists available at ScienceDirect

Atmospheric Environment

journal homepage: www.elsevier.com/locate/atmosenv

Monitoring of greenhouse gases and pollutants across an urban area using a light-rail public transit platform

Check for updates

Logan E. Mitchell^{a,*}, Erik T. Crosman^a, Alexander A. Jacques^a, Benjamin Fasoli^a, Luke Leclair-Marzolf^a, John Horel^a, David R. Bowling^b, James R. Ehleringer^b, John C. Lin^a

- CO₂, CH₄, O₃, PM_{2.5}, NO₂
- Inlets 4m (~13') above ground.
- Post data in real time on the web:
- <u>http://utahaq.chpc.utah.edu/</u>
- http://air.utah.edu

https://doi.org/10.1016/j.atmosenv.2018.05.044

- CO₂ averages across different time ranges.
 - Seasonal
 - Day of week
 - Time of day
- Illustrates the rich temporal structure of the data.

- Using TRAX data with STILT required updating the hyper-near field mixing parameterization.
- Ongoing work to develop hyper local source apportionment using mobile observations & STILT.

distributed receptors: updates to the Stochastic Time-Inverted Lagrangian Transport model's R interface (STILT-R version 2)

Benjamin Fasoli¹, John C. Lin¹, David R. Bowling², Logan Mitchell¹, and Daniel Mendoza^{1,3}

¹Department of Atmospheric Sciences, University of Utah, Salt Lake City, 84112, USA
²Department of Biology, University of Utah, Salt Lake City, 84112, USA
³Division of Pulmonary Medicine, School of Medicine, University of Utah, Salt Lake City, 84112, USA

Correspondence: Benjamin Fasoli (b.fasoli@utah.edu)

Figure 3. Growth of the effective mixing depth. From the receptor (a), surface fluxes are diluted within an atmospheric column depth of h' in the HNF until $h' = h^*$ (b), amplifying the contribution of hyper near-field (HNF) sources and sinks to the receptor. Once h' has reached h^* , surface fluxes are diluted to depth h^* until the end of the simulation (c).

Hot off the press: TRAX footprints & inversion uncertainty reduction.

- NO₂ is a criteria pollutant w/ health impacts.
- NO_x contributes to poor air quality in summer & winter.
- Ammonium nitrate (NH₄NO₃) accounts for ~70% of the PM_{2.5} mass during winter inversions along the Wasatch Front (Kuprov et al., 2014)

NO₂ Relationships

- NO₂ and CO₂ are related through fossil fuel combustion.
 - Strong correlation (r = 0.83)
- NO₂ and O₃ are related through atmospheric photochemistry.
 - Strong correlation (r = -0.96)
- Illustrates the complex signature of fossil fuel combustion on urban atmospheric composition and air quality.

NO₂ Relationships

- The excess NO₂/CO₂ ratio (NO₂/CO₂ above background conditions) provides insight into emission sources.
- High ratios in the center of the valley occur where the is high NO₂ without a corresponding CO₂ signal
 - Warrants further investigation.

- Large NO₂ plume centered on the Union Pacific locomotive rail yard.
- ~3 ppb NO₂ increase from traffic on I-15.
- NO₂/CO₂ ratio is the fingerprint of different emission sources.

NO₂ Relationships

- ~3 ppb NO₂ increase from traffic on I-15
 - Observed where TRAX crosses I-15 in three places.

Switcher Locomotives

- Diesel locomotive "switcher" engines operate in rail yards to move rail cars around.
- Operate 24/7 and often idle
 - Avoids difficult start-ups
 - Prevents engine blocks from freezing in the winter
- ~60 switchers in Utah, 49 of which are operated by UPRR.
 - 30% of UPRR's switchers are Tier 0 and 70% are Tier 0+.
 - (Glade Sowards, UDAQ, personal communication)
- Replacing Tier 0+ with a Tier 4 switcher would reduce NO_x emissions by 89%.

- Utah Air Quality Board: Considers emission reduction policies up to \$6,560/ton for area sources, and higher for large point sources.
 - Repowering switchers have a emissions reduction cost of **\$3,412/ton** (Peter Verschoor, UDAQ, personal communication).
 - States are prohibited from establishing emissions standards for locomotives in the Clean Air Act, but they can offer incentives to encourage clean tech upgrades.
- TRAX measurements could evaluate emission inventories and demonstrate air quality improvements after upgrades.

Take home points

- 1. Used public transit to observe spatiotemporal GHG and air pollutant patterns
 - CO₂, CH₄, O₃, PM_{2.5}, NO₂
- 2. Multi-species analysis:
 - Understanding atmospheric chemistry & transport
 - Identifying emission sources & evaluating inventories

3. Future directions:

- Atmospheric modeling
 - Compare mobile, vs. stationary sites, vs. both
 - Evaluate emissions inventories.
 - Understand atmospheric chemistry, including day vs night
- Measure more species (NOx, BC, etc.)
- Support field campaigns
 - Google Street View mapping project!

- Expansion
 - Other cities
 - Low cost sensors
 - **Electric buses**

Denver expansion on RTD

- SLC & Denver have similar air quality challenges & GHG reduction goals.
- Contact Isaac Vimont for more information

People at Risk In 25 Most Ozone-Polluted Cities

ANNIVERSAR

AMERICAN LUNG

ASSOCIATION

2019 Rank ¹	Metropolitan Statistical Areas	Total Population ²	Under 18 ³	65 and Over ³	Pediatric Asthma ^{4,6}	Adult Asthma ^{5,6}	COPD ⁷	CV Disease ⁸	Poverty ⁹
1	Los Angeles-Long Beach, CA	18,788,800	4,317,234	2,511,924	267,954	1,142,240	636,210	7,806	1,479,796
2	Visalia, CA	464,493	143,726	51,669	8,921	25,149	13,466	193	30,984
3	Bakersfield, CA	893,119	259,120	95,307	16,083	49,617	26,076	373	60,013
4	Fresno-Madera-Hanford, CA	1,296,246	365,661	155,133	22,695	73,023	39,469	540	90,788
5	Sacramento-Roseville, CA	2,598,377	598,140	399,007	37,124	158,830	92,789	1,079	216,432
6	San Diego-Chula Vista-Carlsbad, CA	3,337,685	728,528	454,826	45,217	205,392	113,301	1,389	261,785
7	Phoenix-Mesa, AZ	4,790,771	1,155,134	738,748	93,121	360,835	227,133	2,243	372,324
8	San Jose-San Francisco-Oakland, CA	9,658,361	2,098,636	1,400,989	130,254	598,339	340,714	4,015	793,588
9	Houston-The Woodlands, TX	7,078,523	1,883,271	773,341	149,026	383,590	242,452	3,571	604,115
10	New York-Newark, NY-NJ-CT-PA	23,035,605	4,945,052	3,552,752	448,996	1,651,293	996,592	13,532	1,881,665
11	Redding-Red Bluff, CA	243,847	54,095	48,761	3,357	15,277	9,848	101	23,119
12	Denver-Aurora, CO	3,515,374	802,822	443,992	63,790	253,103	115,044	1,440	193,028
13	Las Vegas-Henderson, NV	2,248,281	521,582	330,243	40,464	180,576	118,876	1,047	175,054
14	Salt Lake City-Provo-Orem, UT	2,559,350	771,143	252,835	46,981	159,617	68,111	662	121,102
15	El Centro, CA	182,830	52,296	23,042	3,246	10,266	5,654	76	13,022

Two upcoming workshops:

http://sites.bu.edu/co2usa/

AQUARIUS

(Air Quality Research in the Western US) Sept 25-26, 2019 in Salt Lake City, UT

- Upcoming aircraft & ground field campaign
- Wintertime PM formation chemistry, relationship to meteorology & co-emitted GHGs in western basins.

