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Question: How will ecosystems respond 
to more frequent and intense drought?

photo: Cal. Dept. of Water Resources, Castaic Lake, Los Angeles County, 13 April 2016



International Drought Experiment (IDE)

 3

simulates the 1-in-100-years drought in the field

https://drought-net.colostate.edu/international-drought-experiment
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0.47 by 0.63 degrees and were driven by a “data atmosphere” (compset
I_2000). The two runs differed only in the magnitudes of precipitation
events.

CLM-simulated carbon fluxes have been compared extensively to
eddy covariance observations both globally and regionally (e.g. Stöckli
et al., 2008; Lawrence et al., 2011; Bonan et al., 2011) as well as locally
(e.g. Levis et al., 2012; Hudiburg et al., 2013; Raczka et al., 2016;
Duarte et al., 2017). We do not seek to extend here these crucial eva-
luations of CLM performance, but rather focus our attention on regional
characteristics of the drought–control run differences in CLM simula-
tions. This approach provides a framework for using forthcoming IDE
observations to help evaluate model performance. It also mitigates the
impact of known CLM biases, described in above references, as they
should largely cancel out when CLM fluxes are subtracted from one
another.

We used the satellite phenology formulation of CLM4 for several
reasons. First, this separates the GPP impacts of reduced precipitation
from the greenness-increasing GPP impacts of CO2 fertilization (Mankin
et al., 2017). CLM4SP reports how CLM4 predicts drought should im-
pact GPP per unit LAI. This per-unit-LAI result is useful both for

examining a piece of future GPP responses to drought as well as in-
terpreting IDE field observations in the present day, before the onset of
late 21st century emissions-driven carbon fertilization. Though the
prognostic carbon and nitrogen cycle formulations of CLM4 provide
more parameters and simulate more processes, it does not necessarily
follow that these simulations are more accurate. For example, two re-
cent studies considered CLM simulations of LAI at two different ever-
green needleleaf (ENF) sites in the Western USA, and demonstrated that
in the absence of site-specific parameter estimations, CLM4.5 under-
estimated ENF LAI in Washington, USA (Duarte et al., 2017) and
overestimated ENF LAI in Colorado, USA (Raczka et al., 2016). Our
global simulation necessarily uses global (that is, non-site-specific)
parameters. Using CLM4SP forces the model with realistic LAI and
avoids the uncertainties of prognostic LAI.

We drove the control simulation with the “standard” forcing data
for CLM4SP offline mode (section 17 of Oleson et al., 2010), which uses
precipitation, solar radiation, temperature, wind, humidity, and pres-
sure for the years 1972–2004 from Qian et al. (2006). The forcing data
are on a global 2.0 by 2.0 degree grid at 6-hourly (precipitation, solar
radiation) or 3-hourly (temperature, wind, humidity, pressure)

Fig. 1. International Drought Experiment (IDE) per-gridcell precipitation reduction. Panel (a): global precipitation reduction as a fraction of the 1948–2004 annual
mean total precipitation. Panel (b): as panel (a), but zoomed to the California, USA analysis area (shown in the orange box in panel (a)). Precipitation reduction
fractions are calculated as ((1st percentile)/(50th percentile)) of the 1948–2004 (Qian et al., 2006) annual total precipitation (see Section 2). Red stars on the panel
(b) denote the California analysis sites described in Table 1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Table 1
Locations used for model evaluation (see also Fig. 1b).

Latitude Longitude Reference

Site (California, USA)
Younger Lagoon Reserve 36.97° N 122.03° W Reed et al. (2011)
McLaughlin Reserve 38.87° N 122.43° W http://nrs.ucdavis.edu/McL/
Sedgwick Reserve 34.70° N 120.02° W http://sedgwick.nrs.ucsb.edu/
Box Springs Reserve 33.98° N 117.30° W http://www.ucnrs.org/
Loma Ridge Global Change Experiment 33.73° N 117.70° W Nelson et al. (2015)
Sierra Foothill Research Extension Center 39.25° N 121.28° W Millikin and Bledsoe (1999)
Carrizo Plains National Monument 35.19° N 119.86° Buck-Diaz and Evens (2011)
Sierra Nevada Aquatic Research Laboratory (SNARL) 37.61° N 118.83° W Reed and Loik (2016)

Site (Central/East USA)
Harvard Forest 42.54° N 72.17 ° W Urbanski et al. (2007)
WLEF 45.95° N 90.27° W Davis et al. (2003)
ARM Southern Great Plains 36.61° N 97.49° W Fischer et al. (2007)
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 6 temporal resolution.
Our experimental simulation is forced by precipitation we derived

from the Qian et al. (2006) precipitation by reducing the magnitudes of
all precipitation events according to the IDE experimental protocol. We
calculated annual total precipitation within each grid cell for all years
in the Qian et al. (2006) dataset (1948–2004), and within each grid cell
calculated the 1st and 50th percentile of these annual precipitation
totals. The 1st percentile approximates the one-in-one-hundred-year
drought, while the 50th percentile approximates the 20th century long-
term average precipitation. We calculated a reduction fraction for each
grid cell as (1st percentile) divided by (50th percentile). We then
multiplied each grid cell's 6-hourly precipitation time series by this grid
cell reduction fraction to create a forcing dataset for the experimental
run. The experimental run used unaltered (Qian et al., 2006) solar ra-
diation, temperature, wind, humidity, and pressure to be consistent
with the IDE protocol.

We conducted a 50 model-year CLM4SP spinup run (Kluzek, 2013)
using the 1972–2004 Qian et al. (2006) atmospheric forcing data.
CLM4SP recycles the atmospheric driver data automatically, so the 50
model-year spinup was forced by 1972–2004 data followed by
1972–1990 data. We ran the experimental and control runs as “hybrid”
CLM4SP runs (Kluzek, 2013) initialized with the final model state of the
spinup run.

We tested two models of the precipitation–GPP relationship. A
simple linear regression describes a GPP–precipitation relationship with
a single unchanging slope. Watts and Bacon (1974) presented a hy-
perbola that fits “two-regime straight-line data”: data characterized by
two straight lines on either side of a join point. The Watts and Bacon
(1974) hyperbola, defined by five parameters, is a two-slope curve with
arbitrary join point and slopes. Within every CLM grid cell we calcu-
lated linear fits using lm() from the R language and platform for sta-
tistical computing (R Core Team, 2017), and we estimated the Watts
and Bacon (1974) slopes and join point using the DEoptim package in R
(Ardia and Mullen, 2009). We used AIC (Akaike, 1976) to determine
whether the one-slope linear or two-slope hyperbolic model best fit the
CLM precipitation–GPP data. AIC provides a quantitative method to
balance goodness of fit against parsimony when fitting a model to data.

Loma Ridge Global Change Experiment (Table 1) has made eddy
covariance net ecosystem exchange (NEE) observations since 2007.
Hilton et al. (2013) optimized site-specific parameter values for the
Vegetation Photosynthesis Respiration Model (VPRM, Mahadevan
et al., 2008) to these observations. We estimated Loma Ridge GPP in-
dependently from CLM by adding VPRM ecosystem respiration to eddy
covariance-observed NEE. Loma Ridge is the only one of our eight
California sites (Table 1) with co-located eddy covariance flux ob-
servations. As noted above, CLM has been compared extensively with

Fig. 2. Site-level empirical slope fits for modeled
GPP–precipitation curves. Site locations are in Table 1 and
Fig. 1b. AIC (Akaike, 1976) chose the two-slope fit (black
lines) over a one-slope linear fit at all California sites de-
monstrating that CLM-simulated California GPP decreases
more per unit decline in precipitation in drier conditions
than in wetter conditions. Absence of a black line indicates
that a one-slope linear best fit the data. Blue “X” markers
on the Loma Ridge panel show GPP estimated by sub-
tracting eddy covariance net ecosystem exchange (NEE)
observations from Vegetation Photosynthesis and Re-
spiration Model (VPRM) respiration (RE) as described in
Section 2. Loma Ridge is the only one of the California sites
that collects eddy covariance observations. (For inter-
pretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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eddy covariance flux observations, and we do not seek to extend these
important analyses here. We do consider the Loma Ridge GPP estimates
a useful reality check that CLM's simulations are plausible and useful for
our purposes, and therefore report these observations along with CLM
results.

3. Results

3.1. GPP–Precipitation slope transitions

Fig. 2 compares annual total GPP against annual total rainfall for
the 15-year CLM control run and 15-year CLM drought run across the
UCNRS sites. We quantitatively compared two descriptions of the
GPP–precipitation curves in Fig. 2 (see Section 2). AIC chose the
two–slope regime over the linear fit for all eight California sites
(Fig. 1b). The overlaid black curves in Fig. 2 show these two-slope fits.
The slope transition point occurs at 500–750mm annual precipitation
for the three wetter northerly sites (McLaughlin, Sierra Foothill, and
Younger Lagoon), but at 250–300mm annual precipitation for the drier
southerly sites (Box Springs, Loma Ridge, and Sedgwick). The larger
difference between mean annual precipitation and the slope transition
point indicates the drier sites are resilient to larger precipitation re-
ductions.

Fig. 3 generalizes Fig. 2 in space by showing the ratio of pre-
cipitation at the point of slope transition (see Section 2) to observed
annual mean precipitation (calculated from 1948 to 2004 observa-
tions). Land grid cells plotted in gray are locations where AIC concluded
a single-slope linear fit best fit the simulated GPP–precipitation re-
lationship. Grid cells plotted in brown, green, or magenta are locations
where AIC chose the two-slope GPP–precipitation curve as the best fit
for the simulations. Grid cells plotted in shades of brown are locations
where long-term mean precipitation is wetter than the slope transition
point; that is, a drought could result in a switch to a different
GPP–precipitation slope. Magenta grid cells are locations where the
1948 to 2004 mean observed precipitation is between 100% and 125%
of the slope transition points. Long-term mean precipitation positions
these points closer than others to entering a new GPP–precipitation

slope as a result of a drought. In other words, a small decrease in
precipitation at these locations could produce a larger decline in GPP
than previous behavior might indicate. Much of Northern California,
sizable portions of sub-Saharan Africa and Australia, and parts of the
Amazon basin and Siberia are in this category.

3.2. Drought-induced annual cycle changes

Fig. 4 shows the modeled annual mean cycle for GPP at daily re-
solution for several sites in the coterminous USA.

The relatively mesic sites Harvard Forest (Massachusetts, USA) and
WLEF (Wisconsin, USA) exhibit little decline in GPP even during one-in-
100-year drought simulations. Moving from the relatively wet and
humid eastern North America sites toward the more arid west, ARM S.
Great Plains (Oklahoma, USA) exhibits a summer and autumn decline
in GPP in the drought relative to the control runs. Northern California
sites Sierra Foothill, McLaughlin, and Younger Lagoon show lower peak
GPP magnitude, an earlier peak in the annual cycle, and annual total
GPP reduction of 15% to 20% for drought relative to control simula-
tions. These effects become even more pronounced at Southern
California sites Box Springs, Loma Ridge, Sedgwick, and Carrizo Plain,
with GPP reduction approaching 50% relative to control simulations.

Fig. 5 shows the annual cycle for transpiration beta factor (βt) at
daily resolution. βt is an attenuation factor ranging from 0.0 to 1.0
employed within CLM that reduces simulated GPP according to soil
moisture stress (Oleson et al., 2010). During the drought simulations
the Southern California sites often experience near total reduction of
GPP because of soil water stress, with βt near zero at Box Springs and
Loma Ridge for several months of the year during drought simulations.
For the control simulations (driven by 1972–1987 observed precipita-
tion), the βt 95% confidence interval at these sites never dips below
0.10. This indicates that complete downregulation of GPP never oc-
curred in the control simulations, even though their driving precipita-
tion included the severe drought of 1976–1977 (Cal. Dept. of Water
Resources, 1983).

Fig. 6, Fig. 7, and Fig. 8 generalize these analyses to the mean an-
nual cycle decline in maximum GPP magnitude, percent decline, and

Fig. 3. Long-term mean annual precipitation (pcp) (Qian et al., 2006) versus the empirically fit transition point in the modeled GPP–pcp relationship. At colored
points AIC (Akaike, 1976) preferred the two-regime straight-line fit (black lines) over a linear fit. At uncolored points GPP–pcp did not show a significant slope
transition. Points in magenta show a ratio between 0.8 and 1.0, indicating that the long-term mean pcp is slightly wetter than the GPP-pcp inflection point. This
suggests that a small decrease in pcp at these locations could produce a larger decline in GPP than previous behavior might indicate. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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 8 shift in the day of year of annual maximum GPP, respectively, for each
CLM grid cell. Virtually every location shows some decline in annual
maximum GPP during severe drought, with the southwestern USA,
much of sub-Saharan Africa, Eastern Brazil, and Australia showing the
largest GPP declines in excess of 40% (Figs. 6 and 7). These same re-
gions, with the addition of western South America, show a pronounced
shift in the timing of the annual cycle (Fig. 8), with the annual max-
imum GPP occurring several weeks to more than a month earlier in the
growing season for the drought scenario.

4. Discussion

GPP–climate feedback uncertainties are responsible for much of the
overall spread in global climate predictions (Friedlingstein et al., 2014;
Ciais et al., 2013), and a substantial portion of these feedback un-
certainties originate in the effects of water availability on GPP (Lei
et al., 2014). A change in the slope of GPP versus precipitation iden-
tifies a precipitation amount at which the GPP response to a given
precipitation change enters a different phase. Examining the CLM
precipitation–GPP curves (Figs. 2 and 3) for a discrete change in slope
tests the hypothesis that plants in more arid and drought-prone areas
(e.g. Southern California) should display a greater resilience to severe
drought conditions than plants in more temperate hydrologic climes
(e.g. Northern California). The six sites where a two-slope regime best
fit the GPP–pcp data (Fig. 2) show a steeper drop in GPP per unit
precipitation decrease at low precipitation levels than at higher levels.

This demonstrates that GPP sensitivity to drought increases with in-
creasing drought severity, but also that GPP rebounds more quickly
from a severe drought than from a milder drought per unit of pre-
cipitation increase.

All of the eight sites examined in California exhibited a significant
slope change in the GPP–precipitation curve. This occurred between
500 and 750mm annual precipitation for Northern California, and
around 300mm annual precipitation for Southern California. This de-
monstrates a steeper decline in GPP per unit precipitation reduction at
drier sites, but also a more responsive increase per unit precipitation
following a return to wetter conditions.

A large section of Northern California – and many other areas
around the world – featured mean 1948–2004 annual precipitation
values between 100 and 125 percent of the GPP–precipitation slope
change (magenta areas in Fig. 3). This suggests that these locations may
see a more drastic decline in GPP during drought conditions than past
observations might suggest, at least under the conditions used in the
present study. Also, although Northern California typically sees more
precipitation and photosynthetic productivity relative to Southern Ca-
lifornia, Northern California also appears to have a reduced margin
between 20th century norms and the transition point to steeper GPP
reduction per unit precipitation decrease (Fig. 3, right panel).

Transpiration beta factor (βt) parameterizes the effect of drought
stress on GPP, and does not attempt to describe plant hydraulic stress
mechanistically. This is a known shortcoming of CLM version 4.5
(Trugman et al., 2018), and βt has been replaced with a mechanistic

Fig. 4. Mean annual cycle (solid and dashed lines) and 95% confidence intervals (gray envelopes) in CLM GPP at selected U.S. analysis sites (site locations in Fig. 1b
and Table 1). The means are calculated over the 15-year simulations (see Section 2).
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 9 description of hydraulic stress in CLM version 5.0 (Lawrence et al.,
2018). CLM 5.0 was not yet released when our work was performed.
Despite this non-mechanistic treatment of hydraulic stress in CLM4SP,
the difference in βt from our control run to our drought-forced run
exhibits regional coherence in both Northern and Southern California,
and is consistent across sites in those regions. This suggests that CLM
sees differences in hydraulic stress response to severe drought between
these regions.

The CLM-diagnosed transpiration beta factor suggests that vegeta-
tion in Northern California does not experience wet season limitation of
GPP from low soil moisture, even during many years of consecutive
severe drought. Severe drought extends the dry season period of soil
moisture constraints on GPP to earlier in the spring and later into the
autumn relative to non-drought conditions. Indeed, timing of soil
moisture availability may be more important than precipitation amount
for GPP in California grasslands (Xu and Baldocchi, 2004). Similarly,
the timing of the onset of the dry season is key for productivity of
Mediterranean forest ecosystems (Maselli et al., 2014).

Southern California sites face GPP limitation from low soil moisture
at virtually all times, and may see near complete reduction of GPP
owing to soil moisture stress during severe drought. This condition
never arose during control simulations driven by observed late 20th
century climate.

Our results suggest that vegetation processes related to GPP may be

impacted differently by a 1-in-100 year drought in Northern versus
Southern California, with Southern California's annual GPP experien-
cing a relatively larger magnitude reduction and a more pronounced
change in its seasonal cycle timing. Sizable parts of sub-Saharan Africa,
Australia, and the Amazon responded to drought similarly to Southern
California.

The results reported here are not meant to comprehensively forecast
future ecosystem responses to severe drought, but rather to provide
context for interpreting field experiments and remote sensing products.
The four following caveats should guide interpretation of the results
reported here. First, CLM grid cells are essentially independent of one
another, with inter-gridcell transport of above- and below-ground
water, energy, and mass handled by other components of CESM that are
beyond the scope of this study and therefore were not activated. The
results we report simulate the response of each CLM grid cell to a severe
drought independent of interactions with other gridcells except as
prescribed by the static atmospheric driver data.

Second, our CLM4SP simulations examine the plant response to
severe drought while holding leaf area index (LAI) constant. This is a
useful accompaniment to remote sensing drought impact measures
because drought-driven phenology changes can be difficult to disen-
tangle from longer-term changes in an ecosystem (Assal et al., 2016).
Moreover, CLM prognostic LAI is known to over-estimate LAI at some
sites while under-estimating at similar sites in the absence of site-

Fig. 5. Mean annual cycle (solid and dashed lines) and 95% confidence intervals (gray envelopes) in CLM transpiration beta factor (βt) parameter at selected U.S.
analysis sites (site locations in Fig. 1b and Table 1). Within CLM (βt) varies between 0.0 and 1.0 to attenuate photosynthesis (Oleson et al., 2010) in response to soil
water shortage.
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Notable changes to magnitude (and 
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differences from Northern California to 
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specific parameterization (Duarte et al., 2017; Raczka et al., 2016). Leaf
area changes are a primary response to drought (Wellstein et al., 2017);
this is one of reasons that our results are not a comprehensive predic-
tion of drought response. They are instead a measure of CLM's ex-
pectation of drought impacts per unit LAI.

Third, all CLM runs in the present study were driven by observed
atmospheric CO2 concentrations from the year 2000 (compset I_2000).
This choice simulates the ambient CO2 conditions prescribed by the IDE
experimental protocol so that the CLM results can aid interpretation of
IDE results and IDE results may inform future CLM work. Constructing
model runs this way isolates them from the carbon dioxide fertilization
effects that many models predict will accompany future drought reali-
zations.

Fourth, by its nature the IDE cannot – and our model experiment
therefore does not – simulate increased atmospheric demand for water
due to warmer temperatures and drought-driven lower humidity. This
is another reason that our results are more useful for interpreting up-
coming field experiments than comprehensively forecasting future real-
world conditions. The regional coherence of GPP–precipitation slope
changes (Fig. 3) can, however, provide guidance for extrapolating IDE
observations in space. For example, Fig. 3b identifies a subset of
Northern California that could be more likely to experience GPP re-
duction from reduced precipitation in excess of what a 20th century
observed GPP–precipitation regression would predict. Were IDE ob-
servations to confirm this, the spatial extent of the affected region
might not be entirely obvious from purely remote-sensing based land

Fig. 6. Absolute decline in mean annual maximum CLM GPP, CLM control runs to CLM drought runs (drought minus control). Grey land areas denote areas masked to
water on the CLM 0.47 by 0.63 degree grid. (For interpretation of colors in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Percent decline in mean annual maximum CLM GPP, CLM control runs to CLM drought runs. Grey land areas denote areas masked to water on the CLM 0.47
by 0.63 degree grid. (For interpretation of colors in this figure legend, the reader is referred to the web version of this article.)
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surface classifications such as plant functional types.
Future work could more thoroughly investigate the ability of CLM in

our configuration to produce GPP estimations that match flux ob-
servation-informed GPP estimates at more field sites. This work, beyond
the scope of the present study, could support or discourage interpreting
our results to predict future real-world conditions.

In any interpretation, our results demonstrate the highly regional
nature of ecosystem drought responses. Key sectors in California and
worldwide – water management and agricultural production – as well
as land management for biodiversity, wildland fire risk, and forest
health, should plan for regionally-specific sensitivity to extreme
drought.

Code availability

Source code and documentation for all components of the CESM
version 1.2 is available from http://www.cesm.ucar.edu/models/
cesm1.2/ (accessed 18 November 2018).

Supporting code for analyses described here is archived at https://
github.com/Timothy-W-Hilton/CLM_IDE_analyses.
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