References (CarbonTracker-CH4)

  • Abbott, D. W., Aasen, I. M., Beauchemin, K. A., Grondahl, F., Gruninger, R., Hayes, M., Huws, S., Kenny, D. A., Krizsan, S. J., Kirwan, S. F., Lind, V., Meyer, U., Ramin, M., Theodoridou, K., von Soosten, D., Walsh, P. J., Waters, S., & Xing, X. (2020). Seaweed and Seaweed Bioactives for Mitigation of Enteric Methane: Challenges and Opportunities. Animals : An Open Access Journal from MDPI, 10(12). https://doi.org/10.3390/ani10122432
  • Andrews, A. E., Kofler, J. D., Trudeau, M. E., Williams, J. C., Neff, D. H., Masarie, K. A., Chao, D. Y., Kitzis, D. R., Novelli, P. C., Zhao, C. L., & Others. (2014). CO2, CO, and CH4 measurements from tall towers in the NOAA Earth System Research Laboratory’s Global Greenhouse Gas Reference Network: Instrumentation, uncertainty analysis, and recommendations for future high-accuracy greenhouse gas monitoring efforts. Atmospheric Measurement Techniques, 7(2), 647.
  • Basu, S., Krol, M., Butz, A., Clerbaux, C., Sawa, Y., Machida, T., Matsueda, H., Frankenberg, C., Hasekamp, O. P., & Aben, I. (2014). The seasonal variation of the CO2 flux over Tropical Asia estimated from GOSAT, CONTRAIL, and IASI. Geophysical Research Letters, 41(5), 1809–1815.
  • Basu, S., Lan, X., Dlugokencky, E., Michel, S., Schwietzke, S., Miller, J. B., Bruhwiler, L., Oh, Y., Tans, P. P., Apadula, F., & Others. (2022). Estimating emissions of methane consistent with atmospheric measurements of methane and δ13C of methane. Atmospheric Chemistry and Physics, 22(23), 15351–15377.
  • Bergamaschi, P., Houweling, S., Segers, A., Krol, M., Frankenberg, C., Scheepmaker, R. A., Dlugokencky, E., Wofsy, S. C., Kort, E. A., Sweeney, C., Schuck, T., Brenninkmeijer, C., Chen, H., Beck, V., & Gerbig, C. (2013). Atmospheric CH4 in the first decade of the 21st century: Inverse modeling analysis using SCIAMACHY satellite retrievals and NOAA surface measurements. Journal of Geophysical Research, D: Atmospheres, 118(13), 7350–7369.
  • Bergamaschi, P., Krol, M., Dentener, F., Vermeulen, A., Meinhardt, F., Graul, R., Ramonet, M., Peters, W., Dlugokencky, E. J., Bergamaschi, P., Krol, M., Dentener, F., Vermeulen, A., & Meinhardt, F. (2005). Inverse modelling of national and European CH4 emissions using the atmospheric zoom model TM5. Atmospheric Chemistry and Physics, 5(9), 2431-2460.
  • Bruhwiler, L., Dlugokencky, E., Masarie, K., Ishizawa, M., Andrews, A., Miller, J., Sweeney, C., Tans, P., & Worthy, D. (2014). CarbonTracker-CH4: An assimilation system for estimating emissions of atmospheric methane. Atmospheric Chemistry and Physics, 14(16), 8269–8293.
  • Cantrell, C. A., Shetter, R. E., McDaniel, A. H., Calvert, J. G., Davidson, J. A., Lowe, D. C., Tyler, S. C., Cicerone, R. J., & Greenberg, J. P. (1990). Carbon kinetic isotope effect in the oxidation of methane by the hydroxyl radical. Journal of Geophysical Research, D: Atmospheres, 95(D13), 22455–22462.
  • Chang, J., Peng, S., Ciais, P., Saunois, M., Dangal, S. R. S., Herrero, M., Havlík, P., Tian, H., & Bousquet, P. (2019). Revisiting enteric methane emissions from domestic ruminants and their δ13C CH4 source signature. Nature Communications, 10(1), 1–14.
  • Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Solazzo, E., Monforti-Ferrario, F., Olivier, J. G. J., & Vignati, E. (2020). Fossil CO2 emissions of all world countries. Luxembourg: European Commission, 1–244.
  • Etiope, G., Ciotoli, G., Schwietzke, S., & Schoell, M. (2019). Gridded maps of geological methane emissions and their isotopic signature. Earth System Science Data, 11(1), 1–22.
  • Ganesan, A. L., Stell, A. C., Gedney, N., Comyn-Platt, E., Hayman, G., Rigby, M., Poulter, B., & Hornibrook, E. R. C. (2018). Spatially Resolved Isotopic Source Signatures of Wetland Methane Emissions. Geophysical Research Letters, 45(8), 3737–3745.
  • Gromov, S., Brenninkmeijer, C. A. M., & Jöckel, P. (2018). A very limited role of tropospheric chlorine as a sink of the greenhouse gas methane. Atmospheric Chemistry and Physics, 18(13), 9831–9843.
  • Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., … Jean-Noël Thépaut. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049.
  • Hooghiemstra, R., & van Ees, H. (2011). Uniformity as response to soft law: Evidence from compliance and non-compliance with the Dutch corporate governance code. Regulation & Governance, 5(4), 480–498.
  • Hossaini, R., Chipperfield, M. P., Saiz‐Lopez, A., Fernandez, R., Monks, S., Feng, W., Brauer, P., & Von Glasow, R. (2016). A global model of tropospheric chlorine chemistry: Organic versus inorganic sources and impact on methane oxidation. Journal of Geophysical Research, D: Atmospheres, 121(23), 14–271.
  • Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F., Bergamaschi, P., Pagliari, V., Olivier, J. G. J., Peters, J. A., & Others. (2019). EDGAR v4. 3.2 Global Atlas of the three major greenhouse gas emissions for the period 1970--2012. Earth System Science Data, 11(3), 959–1002.
  • Jöckel, P., Tost, H., Pozzer, A., Brühl, C., Buchholz, J., Ganzeveld, L., Hoor, P., Kerkweg, A., Lawrence, M. G., Sander, R., Steil, B., Stiller, G., Tanarhte, M., Taraborrelli, D., van Aardenne, J., & Lelieveld, J. (2006). The atmospheric chemistry general circulation model ECHAM5/MESSy1: consistent simulation of ozone from the surface to the mesosphere. Atmospheric Chemistry and Physics, 6(12), 5067–5104.
  • Judd, A. G. (2004). Natural seabed gas seeps as sources of atmospheric methane. Environmental Geology, 46(8), 988–996.
  • King S. L. Quay P. D. Lansdown J., M. (1989). The 13C/12C Kinetic Isotope Effect for Soil Oxidation of Methane increase. Journal of Geophysical Research, 94, 273–277.
  • Krol, M., Houweling, S., Bregman, B., Broek, M. v., Segers, A., van Velthoven, P., Peters, W., Dentener, F., & Bergamaschi, P. (2005). The two-way nested global chemistry-transport zoom model TM5: algorithm and applications. Atmospheric Chemistry and Physics, 5(2), 417–432.
  • Krol, M., Peters, W., Hooghiemstra, P., George, M., Clerbaux, C., Hurtmans, D., Mcinerney, D., Sedano, F., Bergamaschi, P., El Hajj, M., & Others. (2013). How much CO was emitted by the 2010 fires around Moscow? Atmospheric Chemistry and Physics, 13(9), 4737–4747.
  • Krol, M., van Leeuwen, P. J., & Lelieveld, J. (1998). Global OH trend inferred from methylchloroform measurements. Journal of Geophysical Research, 103(D9), 10697–10711.
  • Lan, X., Basu, S., Schwietzke, S., Bruhwiler, L. P., Dlugokencky, E. J., Michel, S. E., Sherwood, O. A., Tans, P. P., Thoning, K. W., Etiope, G., Zhuang, Q., Liu, L., Oh, Y., Miller, J. B., Petron, G., Vaughn, B. H., Andrews, A. E., & Crippa, M. (2021). Improved constraints on global methane emissions and sinks using δ13C-CH₄. Global Biogeochemical Cycles.
  • Lee, J., Oh, Y., Lee, S. T., Seo, Y. O., Yun, J., Yang, Y., Kim, J., Zhuang, Q., & Kang, H. (2023). Soil organic carbon is a key determinant of CH4 sink in global forest soils. Nature Communications, 14(1), 3110.
  • Le Mer, J., & Roger, P. (2001). Production, oxidation, emission and consumption of methane by soils: a review. European Journal of Soil Biology, 37(1), 25–50.
  • Liu, L., Zhuang, Q., Oh, Y., Shurpali, N. J., Kim, S., & Poulter, B. (2020). Uncertainty Quantification of Global Net Methane Emissions from Terrestrial Ecosystems Using a Mechanistically-based Biogeochemistry Model. Journal of Geophysical Research: Biogeosciences, 125(6), e2019JG005428.
  • Matthews E. and Fung, I. (1987). Methane emission from natural wetlands: Global distribution, area, and environmental characteristics of sources. Global Biogeochemical Cycles, 1(1), 61–86.
  • McNicol, G., Fluet-Chouinard, E., Ouyang, Z., Knox, S., Zhang, Z., Aalto, T., Bansal, S., Chang, K.-Y., Chen, M., Delwiche, K., Feron, S., Goeckede, M., Liu, J., Malhotra, A., Melton, J. R., Riley, W., Vargas, R., Yuan, K., Ying, Q., … Jackson, R. B. (2023). Upscaling wetland methane emissions from the FLUXNET‐CH4 eddy covariance network (UpCH4 v1.0): Model development, network assessment, and budget comparison. AGU Advances, 4(5). https://doi.org/10.1029/2023av000956
  • Meirink, J. F., Bergamaschi, P., & Krol, M. C. (2008). Four-dimensional variational data assimilation for inverse modelling of atmospheric methane emissions: method and comparison with synthesis inversion. Atmospheric Chemistry and Physics, 8(21), 6341–6353.
  • Miller, J. B., Mack, K. A., Dissly, R., White, J. W. C., Dlugokencky, E. J., & Tans, P. P. (2002). Development of analytical methods and measurements of 13C/12C in atmospheric CH4 from the NOAA Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network. Journal of Geophysical Research, D: Atmospheres, 107(13).
  • Montzka, S. A., Krol, M., Dlugokencky, E., Hall, B., Jöckel, P., & Lelieveld, J. (2011). Small interannual variability of global atmospheric hydroxyl. Science, 331(6013), 67–69.
  • Oh, Y., Zhuang, Q., Liu, L., Welp, L. R., Lau, M. C. Y., Onstott, T. C., Medvigy, D., Bruhwiler, L., Dlugokencky, E. J., Hugelius, G., D’Imperio, L., & Elberling, B. (2020). Reduced net methane emissions due to microbial methane oxidation in a warmer Arctic. Nature Climate Change, 10(4), 317–321.
  • Patra, P. K., Krol, M. C., Montzka, S. A., Arnold, T., Atlas, E. L., Lintner, B. R., Stephens, B. B., Xiang, B., Elkins, J. W., Fraser, P. J., Ghosh, A., Hintsa, E. J., Hurst, D. F., Ishijima, K., Krummel, P. B., Miller, B. R., Miyazaki, K., Moore, F. L., Mühle, J., … Young, D. (2014). Observational evidence for interhemispheric hydroxyl-radical parity. Nature, 513(7517), 219–223.
  • Peters, W., Jacobson, A. R., Sweeney, C., Andrews, A. E., Conway, T. J., Masarie, K., Miller, J. B., Bruhwiler, L. M. P., Pétron, G., Hirsch, A. I., Worthy, D. E. J., van der Werf, G. R., Randerson, J. T., Wennberg, P. O., Krol, M. C., & Tans, P. P. (2007). An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. Proceedings of the National Academy of Sciences of the United States of America, 104(48), 18925–18930.
  • Randerson, J. T., Chen, Y., Van Der Werf, G. R., Rogers, B. M., & Morton, D. C. (2012). Global burned area and biomass burning emissions from small fires. Journal of Geophysical Research: Biogeosciences, 117(G4).
  • Randerson, J. T., Werf, G. R. van der, Giglio, L., Collatz, G. J., & Kasibhatla., P. S. (2018). Global Fire Emissions Database, Version 4.1 (GFEDv4). ORNL DAAC, Oak Ridge, Tennessee, USA.
  • Ren, T., & Patel, M. K. (2009). Basic petrochemicals from natural gas, coal and biomass: Energy use and CO2 emissions. Resources, Conservation and Recycling, 53(9), 513–528.
  • Rosentreter, J. A., Borges, A. V., Deemer, B. R., Holgerson, M. A., Liu, S., Song, C., Melack, J., Raymond, P. A., Duarte, C. M., & Allen, G. H. (2021). Half of global methane emissions come from highly variable aquatic ecosystem sources. Nature Geoscience, 14(4), 225–230.
  • Saitoh, N., Kimoto, S., Sugimura, R., Imasu, R., Kawakami, S., Shiomi, K., Kuze, A., Machida, T., Sawa, Y., & Matsueda, H. (2015). Validation of GOSAT/TANSO-FTS TIR UTLS CO2 data (Version 1.0) using CONTRAIL measurements. Atmos. Meas. Tech. Discuss, 8, 12993–13037.
  • Saueressig, G., Crowley, J. N., Bergamaschi, P., Brühl, C., Brenninkmeijer, C. A. M., & Fischer, H. (2001). Carbon 13 and D kinetic isotope effects in the reactions of CH4 with O (1 D) and OH: new laboratory measurements and their implications for the isotopic composition of stratospheric methane. Journal of Geophysical Research, D: Atmospheres, 106(D19), 23127–23138.
  • Saunois, M., Stavert, A. R., Poulter, B., Bousquet, P., Canadell, J. G., Jackson, R. B., Raymond, P. A., Dlugokencky, E. J., & Houweling, S. (2020). The Global Methane Budget 2000 – 2017. 1561–1623.
  • Schuur, E. A. G., Abbott, B. W., Commane, R., Ernakovich, J., Euskirchen, E., Hugelius, G., Grosse, G., Jones, M., Koven, C., Leshyk, V., Lawrence, D., Loranty, M. M., Mauritz, M., Olefeldt, D., Natali, S., Rodenhizer, H., Salmon, V., Schädel, C., Strauss, J., … Turetsky, M. (2022). Permafrost and Climate Change: Carbon Cycle Feedbacks From the Warming Arctic. Annual Review of Environment and Resources, 47(1), 343–371.
  • Sherwood, O. A., Schwietzke, S., Arling, V. A., & Etiope, G. (2017). Global inventory of gas geochemistry data from fossil fuel, microbial and burning sources, version 2017. Earth System Science Data, 9(2), 639–656.
  • Sherwood, O. A., Schwietzke, S., & Lan, X. (2021). Global δ13C-CH4 source signature inventory 2020. NOAA Monitoring Laboratory Data Repository.
  • Spivakovsky, C. M., Logan, J. A., Montzka, S. A., Balkanski, Y. J., Foreman‐Fowler, M., Jones, D. B. A., Horowitz, L. W., Fusco, A. C., Brenninkmeijer, C. A. M., & Prather, M. J. (2000). Three‐dimensional climatological distribution of tropospheric OH: Update and evaluation. Journal of Geophysical Research, D: Atmospheres, 105(D7), 8931–8980.
  • Still, C. J., Berry, J. A., Collatz, G. J., & DeFries, R. S. (2003). Global distribution of C3 and C4 vegetation: Carbon cycle implications. Global Biogeochemical Cycles, 17(1), 6–1 – 6–14.
  • Strode, S. A., Wang, J. S., Manyin, M., Duncan, B., Hossaini, R., Keller, C. A., Michel, S. E., & White, J. W. C. (2020). Strong sensitivity of the isotopic composition of methane to the plausible range of tropospheric chlorine. Atmospheric Chemistry and Physics, 20(14), 8405–8419.
  • Sweeney, C., Karion, A., Wolter, S., Newberger, T., Guenther, D., Higgs, J. A., Andrews, A. E., Lang, P. M., Neff, D., Dlugokencky, E., Miller, J. B., Montzka, S. A., Miller, B. R., Masarie, K. A., Biraud, S. C., Novelli, P. C., Crotwell, M., Crotwell, A. M., Thoning, K., & Tans, P. P. (2015). Seasonal climatology of CO2across North America from aircraft measurements in the NOAA/ESRL Global Greenhouse Gas Reference Network. Journal of Geophysical Research, 120(10), 5155–5190.
  • Themelis, N. J., & Bourtsalas, A. C. (2021). Methane generation and capture of US landfills. J. Environ. Sci. Eng. A, 10, 199–206.
  • Thompson, C. R., Wofsy, S. C., Prather, M. J., Newman, P. A., Hanisco, T. F., Ryerson, T. B., Fahey, D. W., Apel, E. C., Brock, C. A., Brune, W. H., & Others. (2022). The NASA Atmospheric Tomography (ATom) mission: Imaging the chemistry of the global atmosphere. Bulletin of the American Meteorological Society, 103(3), E761–E790.
  • Umezawa, T., Machida, T., Ishijima, K., Matsueda, H., Sawa, Y., Patra, P. K., Aoki, S., & Nakazawa, T. (2012). Carbon and hydrogen isotopic ratios of atmospheric methane in the upper troposphere over the Western Pacific. Atmospheric Chemistry and Physics, 12(17), 8095–8113.
  • Van Der Werf, G. R., Randerson, J. T., Giglio, L., Van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M., Van Marle, M. J. E., Morton, D. C., Collatz, G. J., & Others. (2017). Global fire emissions estimates during 1997--2016. Earth System Science Data, 9(2), 697–720.
  • Wofsy, S. C. (2011). HIAPER Pole-to-Pole Observations (HIPPO): fine-grained, global-scale measurements of climatically important atmospheric gases and aerosols. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1943), 2073–2086.
  • Zhang, Z., Poulter, B., Feldman, A. F., Ying, Q., Ciais, P., Peng, S., & Li, X. (2023). Recent intensification of wetland methane feedback. Nature Climate Change, 13(5), 430–433.
  • Zhang, Z., Zimmermann, N. E., Stenke, A., Li, X., Hodson, E. L., Zhu, G., Huang, C., & Poulter, B. (2017). Emerging role of wetland methane emissions in driving 21st century climate change. Proceedings of the National Academy of Sciences of the United States of America, 114(36), 9647–9652.
  • Zhou, L., Warner, J., Nalli, N. R., Wei, Z., Oh, Y., Bruhwiler, L., Liu, X., Divakarla, M., Pryor, K., Kalluri, S., & Goldberg, M. D. (2023). Spatiotemporal Variability of Global Atmospheric Methane Observed from Two Decades of Satellite Hyperspectral Infrared Sounders. Remote Sensing, 15(12), 2992.
  • Zhuang, Q., Guo, M., Melack, J. M., Lan, X., Tan, Z., Oh, Y., & Leung, L. R. (2023). Current and future global lake methane emissions: A process‐based modeling analysis. Journal of Geophysical Research. Biogeosciences, 128(3). https://doi.org/10.1029/2022jg007137
  • Zhuang, Q., Melillo, J. M., Kicklighter, D. W., Prinn, R. G., McGuire, A. D., Steudler, P. A., Felzer, B. S., & Hu, S. (2004). Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century: A retrospective analysis with a process-based biogeochemistry model. Global Biogeochemical Cycles, 18(3). https://doi.org/10.1029/2004GB002239
  • Zhuang, Q., Xu, K., Tang, J., Saikawa, E., Lu, Y., Melillo, J. M., Prinn, R. G., & McGuire, A. D. (2013). Response of global soil consumption of atmospheric methane to changes in atmospheric climate and nitrogen deposition. Global Biogeochemical Cycles, 27(3), 650–663.